Acta Optica Sinica, Volume. 38, Issue 6, 0628003(2018)

Hyperspectral Image Classification Method Based on Targets Constraint and Spectral-Spatial Iteration

Chunyan Yu1, Meng Zhao1, Meiping Song1,2、*, Sen Li1, and Yulei Wang1,2,3
Author Affiliations
  • 1 Information Science and Technology College, Dalian Maritime University, Dalian, Liaoning 116026, China
  • 2 State Key Laboratory of Integrated Services Networks, Xi'an, Shannxi 710071, China
  • 3 Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences, Xi'an, Shannxi 710071, China
  • show less
    Figures & Tables(18)
    Flow chart of classification method
    Comparison of feedback stack methods
    Image of Purdue. (a) False color image; (b) image of ground truth
    Classification results of Purdue data by MTCC-1 method. (a) Iteration for 1 time; (b) iteration for 2 times; (c) iteration for 5 times; (d) final result
    Classification results of Purdue data by MTCC-2 method. (a) Iteration for 1 time; (b) iteration for 2 times; (c) iteration for 5 times; (d) final result
    Image of Salinas Valley. (a) False color image; (b) image of ground truth
    Classification results of Salinas data by MTCC-1 method. (a) Iteration for 1 time; (b) iteration for 2 times; (c) iteration for 5 times; (d) final result
    Classification results of Salinas data by MTCC-2 method. (a) Iteration for 1 time; (b) iteration for 2 times; (c) iteration for 5 times; (d) final result
    Image of Pavia University. (a) False color image; (b) image of ground truth
    Classification results of Pavia data by MTCC-1 method. (a) Iteration for 1 time; (b) iteration for 2 times; (c) iteration for 5 times; (d) final result
    Classification results of Pavia data by MTCC-2 method. (a) Iteration for 1 time; (b) iteration for 2 times; (c) iteration for 5 times; (d) final result
    • Table 1. Confusion matrix of C-class classification results

      View table

      Table 1. Confusion matrix of C-class classification results

      Classification resultReal result
      C1C2CnBKG
      C1n11n12n1nn1B
      C2n21n22n2nn2B
      Cnnn1nn2nnnnnB
      BKGnB1nB2nBnnBB
    • Table 2. Category name and pixel number of Purdue image

      View table

      Table 2. Category name and pixel number of Purdue image

      LabelClass nameSample
      Class 1Alfalfa46
      Class 2Corn-notill1428
      Class 3Corn-min830
      Class 4Corn237
      Class 5Grass/pasture483
      Class 6Grass/trees730
      Class 7Grass/pasture-mowed28
      Class 8Hay-windrowed478
      Class 9Oats20
      Class 10Soybeans-notill972
      Class 11Soybeans-min2455
      Class 12Soybeans-clean593
      Class 13Wheat205
      Class 14Woods1265
      Class 15Bldg-grass green-drives386
      Class 16Stone-steel towers93
      BKGBackground10776
    • Table 3. Comparison of classification evaluation results of Purdue data with different methods%

      View table

      Table 3. Comparison of classification evaluation results of Purdue data with different methods%

      ClassMTCC-1MTCC-2EPF-B-gEPF-B-cEPF-G-gEPF-G-c
      Ci,OACi,PreCi,OACi,PreCi,OACi,PreCi,OACi,PreCi,OACi,PreCi,OACi,Pre
      191.3097.6795.6595.65100.0057.5097.8357.6997.8358.44100.0060.53
      297.7694.5897.6991.9685.0167.0384.9466.9185.2267.0984.4565.76
      399.4093.9698.8092.3493.1374.4094.1073.5492.4173.1292.4174.11
      4100.0099.16100.0099.5899.1664.7499.1664.5699.1660.2699.1659.95
      597.1094.9493.7995.7793.5839.6593.3741.4594.0042.2393.5843.55
      697.4095.0598.6391.25100.0049.0699.7348.9299.7346.82100.0048.70
      7100.00100.00100.00100.0096.4362.7996.4365.8596.4356.2596.4356.25
      899.5899.3799.58100.00100.0069.88100.0070.40100.0071.77100.0071.34
      9100.0064.52100.0062.5095.0038.78100.0042.55100.0055.5695.0063.33
      1097.5393.0397.5390.4682.3062.7082.8261.9781.7962.2182.5162.51
      1198.7895.6298.3794.1995.2376.7195.6476.6394.4677.0294.7077.45
      1296.9694.7396.8097.9598.8262.4798.6563.3898.4861.6798.6561.13
      1398.5498.5497.0798.5199.0279.6199.0277.1999.5176.6999.5173.12
      1497.5597.7095.5796.9598.2631.9198.5031.5898.1031.9098.5031.97
      1597.1598.1799.7498.7296.637.8596.897.9494.307.6799.487.99
      1696.7795.7496.7796.7796.7754.8898.9257.86100.0052.25100.0052.54
      AO98.0997.7094.8395.3394.9994.60
      P96.8496.0046.2346.4746.3146.12
    • Table 4. Category name and pixel number of Salinas image

      View table

      Table 4. Category name and pixel number of Salinas image

      LabelClass nameSample
      Class 1Weed 12009
      Class 2Weed 23726
      Class 3Fallow1976
      Class 4Fallow rough plow1394
      Class 5Fallow smooth2678
      Class 6Stubble3959
      Class 7Celery3579
      Class 8Grapes untrained11271
      Class 9Soil vineyard develop6203
      Class 10Corn3278
      Class 11Lettuce 4 weeks1068
      Class 12Lettuce 5 weeks1927
      Class 13Lettuce 6 weeks916
      Class 14Lettuce 7 weeks1070
      Class 15Vineyard untrained7268
      Class 16Vineyard trellis1807
      BKGBackground56975
    • Table 5. Comparison of classification evaluation results of Salinas data with different methods%

      View table

      Table 5. Comparison of classification evaluation results of Salinas data with different methods%

      ClassMTCC-1MTCC-2EPF-B-gEPF-B-cEPF-G-gEPF-G-c
      Ci,OACi,PreCi,OACi,PreCi,OACi,PreCi,OACi,PreCi,OACi,PreCi,OACi,Pre
      198.6193.2299.1590.46100.0073.19100.0074.05100.0074.00100.0071.22
      298.2895.2299.0694.01100.0056.2299.9756.21100.0056.72100.0054.67
      392.9192.7395.2488.69100.0012.20100.0012.22100.0012.13100.0012.10
      494.1285.4794.6283.75100.0023.13100.0023.25100.0023.04100.0022.64
      595.2286.0396.3485.6398.5155.9598.3655.6698.4756.2998.8457.61
      698.8189.9799.2789.32100.0081.75100.0081.18100.0081.58100.0080.65
      798.4489.8799.3988.35100.0079.34100.0080.14100.0080.2199.9779.48
      898.9795.6198.0594.8881.5287.1181.4786.8482.3788.3383.5288.82
      994.9796.7094.2396.5099.8535.2599.8435.3399.8735.1999.8734.90
      1095.7995.8896.0394.9396.1928.0696.0627.7796.4927.9697.8630.16
      1194.1093.7595.3289.85100.0023.5799.9123.58100.0023.71100.0024.09
      1296.9490.5997.8290.36100.0027.42100.0027.36100.0027.20100.0027.23
      1397.3876.9696.8376.2799.1367.1699.4567.3899.5666.9199.7866.52
      1497.5783.9298.6082.17100.0065.97100.0065.64100.0065.40100.0067.85
      1598.3598.1896.8696.8993.8276.1793.2675.8694.3276.8696.1977.94
      1697.6892.8098.5692.2399.6169.4799.5669.1999.3970.3599.6770.38
      AO97.3397.2995.8795.7096.0196.55
      P95.3294.8146.7146.6346.7747.04
    • Table 6. Category name and pixel number of Pavia image

      View table

      Table 6. Category name and pixel number of Pavia image

      LabelClass nameSample
      Class 1Asphalt6631
      Class 2Meadows18649
      Class 3Gravel2099
      Class 4Trees3064
      Class 5Painted metal sheets1345
      Class 6Bare soil5029
      Class 7Bitumen1330
      Class 8Self-blocking bricks3682
      Class 9Shadows947
      BKGBackground164624
    • Table 7. Comparison of classification evaluation results of Pavia data with different methods%

      View table

      Table 7. Comparison of classification evaluation results of Pavia data with different methods%

      ClassMTCC-1MTCC-2EPF-B-gEPF-B-cEPF-G-gEPF-G-c
      Ci,OACi,PreCi,OACi,PreCi,OACi,PreCi,OACi,PreCi,OACi,PreCi,OACi,Pre
      183.5632.6685.0623.0097.0718.2897.1018.2096.5318.5696.9518.72
      285.0585.1784.6376.4798.1036.5198.0936.4898.1337.1098.1637.42
      380.0442.6076.4633.6691.4734.1991.7134.5591.7635.1191.8135.02
      483.8622.3784.9319.1895.0410.0393.999.9394.3510.2198.1410.69
      599.1261.4398.0360.02100.0042.92100.0044.42100.0041.81100.0044.63
      685.4189.9188.2485.92100.009.69100.009.74100.009.73100.009.72
      787.3770.2585.2966.51100.0039.82100.0039.19100.0040.82100.0041.34
      882.0327.0990.5222.7999.0219.1998.7219.2398.9119.2899.5119.31
      980.1524.5573.2219.06100.009.41100.009.15100.007.44100.007.00
      AO84.6885.4398.9798.9598.8499.17
      P79.1371.4420.4120.4120.3920.45
    Tools

    Get Citation

    Copy Citation Text

    Chunyan Yu, Meng Zhao, Meiping Song, Sen Li, Yulei Wang. Hyperspectral Image Classification Method Based on Targets Constraint and Spectral-Spatial Iteration[J]. Acta Optica Sinica, 2018, 38(6): 0628003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 20, 2017

    Accepted: --

    Published Online: Jul. 9, 2018

    The Author Email: Song Meiping (smping@163.com)

    DOI:10.3788/AOS201838.0628003

    Topics