Laser & Optoelectronics Progress, Volume. 57, Issue 9, 093006(2020)

Detection of Anthracnose in Camellia Oleifera Based on Laser-Induced Breakdown Spectroscopy

Yande Liu*, Xue Gao, Mengjie Cheng, Zhaoguo Hou, Xiaodong Lin, and Jia Xu
Author Affiliations
  • Institute of Optics Mechanics Electronics Technology and Application, East China Jiaotong University, Nanchang, Jiangxi 330013, China
  • show less
    Figures & Tables(14)
    Sample of camellia oleifera leaves. (a) Healthy camellia oleifera leaves; (b) infected anthracnose camellia oleifera leaves
    PCR test results of camellia oleifera leaves
    Original spectrum of camellia oleifera leaves after interception
    Working curve of standard solution. (a) Healthy camellia oleifera leaves; (b) infected anthracnose camellia oleifera leaves
    Location of characteristic line of Mn element
    Comparison before and after data smoothing
    PLS model and prediction model of Mn element after 7-point data smoothing and first derivative de-noising. (a) PLS model; (b)prediction model
    Best sub-interval selected by the iPLS model. (a) Spectral graph of the 24th interval with RMSECV; (b) spectral graph corresponding to the 6th sub-interval
    iPLS modeling set scatter diagram
    iPLS prediction set scatter diagram
    • Table 1. Determination conditions of Mn element

      View table

      Table 1. Determination conditions of Mn element

      TestconditionWavelength /nmLampcurrent /mAAcetylene flowrate /(L·min-1)Airflowrate /(L·min-1)Slitwidth /nm
      Parameter279.531.37.50.2
    • Table 2. Division of samples

      View table

      Table 2. Division of samples

      SampleCategoryNumberof samplesRangevalue /(mg·mg-1)Averagevalue /(mg·mg-1)
      Healthy camelliaoleifera leavescalibration set1811.0600-4.25702.2919
      prediction set591.4610-3.72402.2767
      Camellia oleifera leaves with anthracnosecalibration set1570.7990-3.32901.4476
      prediction set511.0680-2.78801.3581
    • Table 3. PLS model results of smoothed data processed by different preprocessing methods

      View table

      Table 3. PLS model results of smoothed data processed by different preprocessing methods

      Spectral pretreatmentmethodEvaluationindexBeforesmoothing5 pointssmoothing7 pointssmoothing9 pointssmoothing
      RC0.84610.86210.89560.8760
      OriginalRMSECV /(μg·mg-1)0.25750.24990.22040.2433
      RP0.81950.82120.85400.8315
      RMSEP /(μg·mg-1)0.27690.26580.25480.2591
      RC0.85340.85620.86480.8605
      DenoisingRMSECV /(μg·mg-1)0.24340.23750.24030.2482
      RP0.81620.81960.83290.8142
      RMSEP /(μg·mg-1)0.25530.24690.23730.2499
      RC0.83450.84400.88400.8396
      Baseline correctionRMSECV /(μg·mg-1)0.28750.25700.17700.2764
      RP /(μg·mg-1)0.80100.82190.83330.8019
      RMSEP /(μg·mg-1)0.31690.27220.25240.2911
      RC0.85840.89470.90250.8892
      First derivativede-noisingRMSECV /(μg·mg-1)0.24140.22060.21920.2227
      RP0.82150.85190.88820.8352
      RMSEP /(μg·mg-1)0.26920.24740.23560.2339
      RC0.85230.85210.85070.8619
      Second derivativede-noisingRMSECV /(μg·mg-1)0.25280.25320.25690.2354
      RP0.81900.81500.83770.8323
      RMSEP /(μg·mg-1)0.27840.27910.27740.2802
      RC0.83230.83890.84290.8413
      NormalizationRMSECV /(μg·mg-1)0.28290.27050.27110.2514
      RP0.81890.81060.82540.8177
      RMSEP /(μg·mg-1)0.30620.30980.29550.3016
    • Table 4. iPLS modeling analysis results

      View table

      Table 4. iPLS modeling analysis results

      Interval numberOptimum principal componentRMSECV /(μg·mg-1)ROptimum interval
      170.27700.83041
      290.25800.85481
      3100.23600.88071
      4120.22000.89661
      560.25100.86322
      660.24900.86602
      760.25600.85772
      860.25500.85892
      970.23300.88433
      1080.23500.88323
      1170.23800.87973
      1270.24000.87693
      1370.22000.89664
      1460.22600.89184
      1570.22400.89314
      1670.22700.88994
      1760.22200.89455
      1860.22100.89615
      1970.21700.89995
      2080.22000.89795
      2160.23500.88166
      2280.21600.90166
      2380.21600.90136
      2480.20900.90766
      2560.22800.88897
      2670.21000.90687
      2760.21400.90277
      2860.20900.90677
      2980.27000.84147
      3080.21900.89968
    Tools

    Get Citation

    Copy Citation Text

    Yande Liu, Xue Gao, Mengjie Cheng, Zhaoguo Hou, Xiaodong Lin, Jia Xu. Detection of Anthracnose in Camellia Oleifera Based on Laser-Induced Breakdown Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(9): 093006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Sep. 5, 2019

    Accepted: Sep. 26, 2019

    Published Online: May. 6, 2020

    The Author Email: Yande Liu (jxliuyd@163.com)

    DOI:10.3788/LOP57.093006

    Topics