Laser Technology, Volume. 46, Issue 4, 499(2022)

Review on radiation features of laser-induced plasma

WANG Weijiang1, JIA Kai1, FANG Ruina1, XING Hao1, HUANG Yun2, ZHANG Ying1, MA Chaoqun1,2, and WANG You1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(81)

    [1] [1] BEILIS I I. Laser plasma generation and plasma interaction with ablative target[J]. Laser and Particle Beams, 2007, 25(1): 53-63.

    [2] [2] GIACOMO A D, DELL’AGLIO M, GAUDIUSO R, et al. Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas[J]. Spectrochimica Acta, 2012, B78: 1-19.

    [3] [3] FREEMAN J R, HARILAL S S, DIWAKAR P K, et al. Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions[J]. Spectrochimica Acta, 2013, B87: 43-50.

    [4] [4] CHAUDHARY K, RIZVI S Z H, ALI J. Laser-induced plasma and its applications[C]//Plasma Science and Technology-Progress in Physical States and Chemical Reaction. Durham, USA: Instrument Society of America, 2016: 259-291.

    [5] [5] WANG X F, PACHTMAN A, XU Zh Zh, et al. Laser plasma X-ray emission from 5 to 200[J]. Acta Physica Sinica, 1990, 39(6): 922-926(in Chinese).

    [6] [6] GIULIETTI D, GIZZI L A. X-ray emission from laser-produced plasmas[J]. Rivista Del Nuovo Cimento, 1998, 21(10): 1-89.

    [7] [7] CANNAV A, TORRISI L, CECCIO G, et al. Characterization of X-ray emission from laser generated plasma[C]// Plasma Physics by Laser and Application. Paris, France: Edition Diffusion Press Science, 2018, 167:03004.

    [8] [8] KOROLIOV A, REKLAITIS J, VARSOCKAJA K, et al. X-ray pulse emission of alkali metal halide salts irradiated by femtosecond laser pulses[J]. Applied Physics, 2020, B126(144): 1-7.

    [9] [9] LOKASANI R, ARAI G, KONDO Y, et al. Soft X-ray emission from molybdenum plasmas generated by dual laser pulses[J]. Applied Physics Letters, 2016, 109(19):194103.

    [10] [10] WEGRZYNSKI , BARTNIK A, WACHULAK P, et al. Laser-produced plasma soft X-ray source based on an aerosol target[J]. Phy-sics of Plasmas, 2020, 27(7): 073102.

    [11] [11] WU T, HIGASHIGUCHI T, LI B W, et al. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd∶YAG laser pulses[J]. Journal of Physics, 2016, B49(3): 035001.

    [12] [12] LI B W, OTSUKA T, SOKELL E, et al. Characteristics of laser produced plasmas of hafnium and tantalum in the 1-7 nm region[J]. The European Physical Journal, 2017, D71: 278.

    [13] [13] YIN L, WANG H Ch, REAGAN B A, et al. 6.7-nm emission from Gd and Tb plasmas over a broad range of irradiation parameters using a single laser[J]. Physical Review Applied, 2016, 6(3): 034009.

    [14] [14] HARA H, ARAI G, KONDO Y, et al. Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas[J]. Applied Physics Express, 2016, 9(6): 066201.

    [15] [15] HE J, WU T, YANG L. Study on ultraviolet radiation characteristics of pulse laser-induced hafnium plasma[J]. Laser & Optoelectronics Progress, 2020, 57(19): 191402(in Chinese).

    [16] [16] ZHONG F Ch, DENG J, ZHANG Zh Q, et al. Characteristic of plasma X-ray emission generated by femtosecond and nanosecond laser pulses[J]. Acta Optica Sinica, 1999, 19(3): 364-368(in Ch-inese).

    [17] [17] MURNANE M M, KAPTEYN H C, ROSEN M D, et al. Ultrafast X-ray pulses from laser-produced plasmas[J]. Science, 1991, 251(4993): 531-536.

    [18] [18] CHEN Sh Sh, LI Y L, XU Zh Zh, et al. Soft X-ray emission from 1.06μm laser plasmas and its atomic number dependence[J]. Acta Optica Sinica, 1992, 12(1): 27-32(in Chinese).

    [19] [19] RYAZANTSEV S N, SKOBELEV I Y, FILIPPOV E D, et al. Precise wavelength measurements of potassium He- and Li-like satellites emitted from the laser plasma of a mineral target[J]. Matter and Radiation at Extremes, 2021, 6(1): 014402.

    [20] [20] GUO Y B, PAN Sh F. Study of soft X-ray pulses from a repetitively laser-produce plasma[J]. Chinese Journal of Light Scattering, 1997, 9(1): 17-23(in Chinese).

    [21] [21] PHUOC K T, ROUSSE A, PITTMAN M, et al. X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma[J]. Physical Review Le-tters, 2003, 91(19): 195001.

    [22] [22] ZHAO T Z, BATSON T, HOU B, et al. Characterization of hard X-ray sources produced via the interaction of relativistic femtosecond laser pulses with metallic targets[J]. Applied Physics, 2019, B125(8): 1-9.

    [23] [23] FILIPPOV E D, MAKAROV S S, BURDONOV K F, et al. Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field[J]. Scientific Reports, 2021, 11: 8180.

    [24] [24] KRYGIER A, KEMP G E, COPPARI F, et al. Optimized continuum X-ray emission from laser-generated plasma[J]. Applied Physics Letters, 2020, 117(25): 251106.

    [25] [25] VERSOLATO O O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography[J]. Plasma Sources Science and Technology, 2019, 27(7): 102923.

    [26] [26] WU T, WANG X B, WANG Sh Y, et al. Characteristics of extreme ultraviolet emission from tin plasma using CO2 laser for lithography[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1729-1733(in Chinese).

    [27] [27] SU M G, MIN Q, CAO S Q, et al. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model[J]. Scientific Reports, 2017, 7: 45212.

    [28] [28] WANG J W, WANG X B, ZUO D L. Investigation of plume of laser-induced discharge plasma[J]. Laser Technology, 2020, 44(2): 173-177(in Chinese).

    [29] [29] WANG J W, WANG X B, ZUO D L, et al. Characteristics of discharge and beyong extreme ultraviolet spectra of laser induced discharge gadolinium plasma[J]. Optics and Laser Technology, 2021, 138: 106940.

    [30] [30] LI Zh G, DOU Y P, XIE Zh, et al. Research on characteristics of extreme ultraviolet emission from laser produce plasma on structured Sn target[J]. Chinese Journal of Lasers, 2021, 48(16): 1601005(in Chinese).

    [31] [31] SHIMADA Y, NISHIMURA H, NAKAI M, et al. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams[J]. Applied Physics Le-tters, 2005, 86(5): 051501.

    [32] [32] WU L Zh, SHEN R Q, XU J, et al. Ultraviolet spectroscopic study of laser-induced Cu plasmas[J]. Journal of Atomic and Molecular Physics, 2010, 27(1): 117-122(in Chinese).

    [33] [33] ZHENG P Ch, LIU H D, WANG J M, et al. Study on time evolution process of laser-induced aluminum alloy plasma[J]. Chinese Journal of Lasers, 2014, 41(10): 1015001(in Chinese).

    [34] [34] WU L, SU M G, MIN Q, et al. Analysis of extreme ultraviolet spectral profiles of laser-produced Cr plasmas[J]. Chinese Physics, 2019, B28(7): 075201.

    [35] [35] BAKHIET M, SU M G, CAO Sh Q, et al. Analysis of ion radiation characteristics in the middle and late stages of laser-produced Cd plasma evolution in vacuum[J]. Journal of Quantitative Spectroscopy & Radiative, 2021, 263: 107535.

    [36] [36] BALKI O, RAHMAN M M, ELSAYED-ALI H E. Optical emission spectroscopy of carbon laser plasma ion source[J]. Optics Communications, 2018, 412: 134-140.

    [37] [37] BUTORIN P S, ZADIRANOV Y M, ZUEV S Y, et al. Absolutely calibrated spectrally resolved measurements of Xe laser plasma radiation intensity in the EUV range[J]. Technical Physics, 2018, 63(10): 1507-1510.

    [38] [38] VINOGRADOV A V, SHLYAPTSEV V N. Amplification of ultraviolet radiation in a laser plasma[J]. American Institute of Physics, 1983, 13(11): 1511-1514.

    [39] [39] RADZIEMSKI L, CREMERS D A, BENELLI K, et al. Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration[J]. Spectrochimica Acta, 2005, B60(2): 237-248.

    [40] [40] LI X Y, LIN Zh X, LIU Y Y, et al. Spectroscopic study on the behaviors of the laser-induced air plasma[J]. Acta Optica Sinica, 2004, 24(8): 1051-1057(in Chinese).

    [41] [41] LIN Zh X, WU J Q, GONG Sh Sh. Spectroscopic study on the time-evolution behaviors of the laser-induced N2 plasma[J]. Optics & Optoelectronic Technology, 2005, 3(1): 22-26(in Chinese).

    [42] [42] LIU X L, SUN Sh H, CAO Y, et al. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma[J]. Acta Physica Sinica, 2013, 62(4): 045201(in Chinese).

    [43] [43] ZHANG L W, LIN Ch, XIN L, et al. New remote sensing system: White-light LiDAR[J]. High Power Laser and Particle Beams, 2008, 20(10): 1603-1608(in Chinese).

    [44] [44] HAFEZ M A, KHEDR M A, ELAKSHER F F, et al. Characteristics of Cu plasma produced by a laser interaction with a solid target[J]. Plasma Sources Science and Technology, 2003, 12(3): 185-198.

    [45] [45] WANG L, ZHOU Y, GONG H, et al. Effect of sample temperature on radiation characteristics of laser-induced Cu plasma[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(2): 110-116(in Chinese).

    [46] [46] FILHO C I S, OLIVEIRA A L, PEREIRA S C F, et al. Bright thermal (blackbody) emission of visible light from LnO2 (Ln=Pr, Tb), photoinduced by a NIR 980nm laser[J]. Dalton Transactions, 2019, 48(8): 2574-2581.

    [47] [47] ABBAS Q A. Effect of target properties on the plasma characteristics that produced by laser at atmospheric pressure[J]. Iraqi Journal of Science, 2019, 60(6): 1251-1258.

    [48] [48] TRAUTNER S, JASIK J, PARIGGER C G, et al. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands[J]. Spectrochimica Acta, 2017, A 174: 331-338.

    [49] [49] HARILAL S S, SKRODZKI P J, MILOSHEVSKY A, et al. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas[J]. Physics of Plasma, 2017, 24(6): 063304.

    [50] [50] KAUTZ E J, YEAK J, BERNACKI B E, et al. The role of ambient gas confinement, plasma chemistry, and focusing conditions on emission features of femtosecond laser-produced plasmas[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(8): 1574-1586.

    [51] [51] RADZIEMSKI L J, CREMERS D A, BOSTIAN M, et al. Laser-induced breakdown spectra in the infrared region from 750 to 2000nm using a cooled InGaAs diode array detector[J]. Applied Spectroscopy, 2007, 61(11): 1141-1146.

    [52] [52] JELINKOVA H, DOROSHENKO M E, OSIKO V V, et al. Dysprosium thiogallate laser: Source of mid-infrared radiation at 2.4, 4.3, and 5.4μm[J]. Applied Physics, 2016, A122(8): 1-8.

    [53] [53] WANG X Sh, SONG X W, GAO X, et al. The effect of air pressure on the IR spectral emission from laser induced air plasma[J]. Optics Communications. 2020, 456: 124603.

    [54] [54] WANG X Sh, MA Y M, GAO X, et al. Near infrared characteristics of air plasma induced by nanosecond laser[J]. Acta Physica Sinica, 2020, 69(2): 029502(in Chinese).

    [55] [55] WANG X Sh, YUAN L X, LI X, et al. The IR radiation characte-ristics of nanosecond pulsed laser induced air plasma[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2698-2701(in Chin-ese).

    [56] [56] CIVIS S, FERUS M, KUBELIK P, et al. Potassium spectra in the 700-7000cm-1 domain: Transitions involving f-, g-, and h-states[J]. Astronomy & Astrophysics, 2012, 541(A125): 1-10.

    [57] [57] THOMSON M D, KRE M, LOFFLER T, et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications[J]. Laser & Photon, 2007, 1(4): 349-368.

    [58] [58] LIAO G Q, LI Y T. Review of intense terahertz radiation from relativistic laser-produced plasmas[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 1-7.

    [59] [59] LI X H, ZHOU H B, ZOU D B. Study of ultra-intense laser driven solid line emitting terahertz wave[J]. Acta Optica Sinica, 2015, 35(3): 0314003(in Chinese).

    [60] [60] PETROV G M, DAVIDSON A, ROCK B, et al. Broadband terahertz radiation from metal targets irradiated by a short pulse laser[J]. Physics Plasmas, 2020, 27(1): 013109.

    [61] [61] WANG T Z, LEI H Y, SUN F Zh, et al. Experimental study of tera-hertz radiation driven by femtosecond ultraintense laser[J]. Acta Physica Sinica, 2021, 70(8): 085205(in Chinese).

    [62] [62] HERZER S, WOLDEGEORGIS A, POLZ J, et al. An investigation on THz yield at relativistic laser intensities from laser-produced solid density plasmas[J]. New Journal of Physics, 2018, 20: 063019.

    [63] [63] DAI J M, LIU J G, ZHANG X C. Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183-190.

    [64] [64] SHKURINOV A L P, SINKO A S, SOLYANKIN P M, et al. Impact of the dipole contribution on the terahertz emission of air-based plasma induced by tightly focused femtosecond laser pulses[J]. Physical Review, 2017, E95(4): 043209.

    [65] [65] WANG T J, MARCEAU C, YUAN S, et al. External focusing effect on terahertz emission from a two-color femtosecond laser-induced filament in air[J]. Laser Physical Letters, 2011, 8(1): 57-61.

    [66] [66] LI N, BAI Y, LIU P. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses[J]. Acta Physica Sinica, 2016, 65(11): 110701(in Chin-ese).

    [67] [67] ANDREEVA V A, KOSAREVA O G, PANOV N A, et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma[J]. Physical Review Letters, 2016, 116(6): 063902.

    [68] [68] THIELE I, MARTINEZ P G D A, NUTER R, et al. Broadband tera-hertz emission from two-color femtosecond-laser-induced microplasmas[J]. Physical Review, 2017, A96(5): 053814.

    [69] [69] YOU Y S, OH T I, KIM K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments[J]. Physical Review Letters, 2012, 109(18): 183902.

    [70] [70] LUBENKO D M, PROKOPEV V E, ALEKSEEV S V, et al. Control of THz radiation divergence in laser filaments[J]. Atmospheric and Oceanic Optics, 2019, 32(4): 430-433.

    [71] [71] USHAKOV A, CHIZHOV P, BUKIN V, et al. Multiple filamentation effects on THz radiation pattern from laser plasma in air[J]. Photonics, 2021, 8(4):1-8.

    [72] [72] BAKHTIARI F, GOLMOHAMMADY S, YOUSEFI M, et al. Terahertz radiation generation and shape control by interaction of array Gaussian laser beams with plasma[J]. Physics of Plasmas, 2016, 23(12): 123105.

    [73] [73] VAICAITIS V, BALACHNINAITE O, MORGNER U, et al. Terahertz radiation generation by three-color laser pulses in air filament[J]. Journal Applied Physics, 2019, 125(17): 173103.

    [74] [74] DORRANIAN D, GHORANNEVISS M, STARODUBTSEV M, et al. Microwave emission from TW-100 fs laser irradiation of gas jet[J]. Laser and Particle Beams, 2005, 23(4): 583-596.

    [75] [75] NAKAJIMA H, SHIMADA Y, SOMEKAWA T, et al. Nondestructive sensor using microwaves from laser plasma by subnanosecond laser pulses[J].IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 718-722.

    [76] [76] MIRAGLIOTTA J A, BRAWLEY B, SAILOR C, et al. Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser[J].Proceedings of the SPIE, 2011, 8037: 1-8.

    [77] [77] ZVORYKIN V D, LONIN A A, LEVCHENKO A O, et al. Directed transfer of microwave radiation in slidingmode plasma waveguides produced by ultraviolet laser in atmospheric air[J]. Applied Optics, 2014, 53(31): 131-140.

    [78] [78] STEPHAN K D, GARZA A E D L, HUA Y. Dispersion and attenuation characteristics of steady-state microwave plasma waveguide[J]. AIP Advances, 2020, 10(4): 045036.

    [79] [79] CHEN Z Y, LI J F, LI J, et al. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited[J]. Physica Scripta, 2011, 83(5): 055503.

    [80] [80] JIANG W M, LI Y T, ZHANG Zh, et al. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions[J]. Acta Physica Sinica, 2019, 68(12): 125201(in Chinese).

    [81] [81] KULYGIN M, DENISOV G. Nanosecond laser-driven semiconductor switch for 70GHz microwave radiation[J]. Journal of Infrared Millimeter & Terahertz Waves, 2012, 33: 638-648.

    CLP Journals

    [1] QI Litao, CHEN Jinxin, TIAN Zhen. Investigation on mechanism of material ejection by nanosecond laser ablation of mono-crystalline silicon under different environments[J]. Laser Technology, 2023, 47(6): 824

    Tools

    Get Citation

    Copy Citation Text

    WANG Weijiang, JIA Kai, FANG Ruina, XING Hao, HUANG Yun, ZHANG Ying, MA Chaoqun, WANG You. Review on radiation features of laser-induced plasma[J]. Laser Technology, 2022, 46(4): 499

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 27, 2021

    Accepted: --

    Published Online: Aug. 2, 2022

    The Author Email: WANG You (youwang_2007@aliyun.com)

    DOI:10.7510/jgjs.issn.1001-3806.2022.04.010

    Topics