International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 42007(2025)

Neuromorphic devices assisted by machine learning algorithms

Huo Ziwei, Sun Qijun, Yu Jinran, Wei Yichen, Wang Yifei, Cho Jeong Ho, and Wang Zhong Lin
References(202)

[1] [1] Ham D, Park H, Hwang S and Kim K. 2021. Neuromorphic electronics based on copying and pasting the brain.Nat. Electron.4, 635–644.

[2] [2] Liu X H, Wang F Y, Su J, Zhou Y and Ramakrishna S. 2022. Bio-inspired 3D artificial neuromorphic circuits.Adv. Funct. Mater.32, 2113050.

[3] [3] Guo X H, Xiang J L, Zhang Y J and Su Y K. 2021. Integrated neuromorphic photonics: synapses, neurons, and neural networks.Adv. Photon. Res.2, 2000212.

[4] [4] Sebastian A, Le Gallo M and Eleftheriou E. 2019. Computational phase-change memory: beyond von Neumann computing.J. Phys. D: Appl. Phys.52, 443002.

[5] [5] Yang R, Huang H M and Guo X. 2019. Memristive synapses and neurons for bioinspired computing.Adv. Electron. Mater.5, 1900287.

[6] [6] Fernandes D and Carvalho A L. 2016. Mechanisms of homeostatic plasticity in the excitatory synapse.J. Neurochem.139, 973–996.

[7] [7] Nadim F and Bucher D. 2014. Neuromodulation of neurons and synapses.Curr. Opin. Neurobiol.29, 48–56.

[8] [8] Ielmini D, Wang Z and Liu Y. 2021. Brain-inspired computing via memory device physics.APL Mater.9, 050702.

[9] [9] Schuman C D, Kulkarni S R, Parsa M, Mitchell J P, Date P and Kay B. 2022. Opportunities for neuromorphic computing algorithms and applications.Nat. Comput. Sci.2, 10–19.

[10] [10] Kozachkov L, Tauber J, Lundqvist M, Brincat S L, Slotine J J and Miller E K. 2022. Robust and brain-like working memory through short-term synaptic plasticity.PLoS Comput. Biol.18, e1010776.

[11] [11] Li E L, Lin W K, Yan Y J, Yang H H, Wang X M, Chen Q Z, Lv D X, Chen G X, Chen H P and Guo T L. 2019. Synaptic transistor capable of accelerated learning induced by temperature-facilitated modulation of synaptic plasticity.ACS Appl. Mater. Interfaces11, 46008–46016.

[12] [12] Mozzachiodi R and Byrne J H. 2010. More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory.Trends Neurosci.33, 17–26.

[13] [13] Lee G, Baek J H, Ren F, Pearton S J, Lee G H and Kim J. 2021. Artificial neuron and synapse devices based on 2D materials.Small17, e2100640.

[14] [14] Sung S H, Jeong Y, Oh J W, Shin H J, Lee J H and Lee K J. 2023. Bio-plausible memristive neural components towards hardware implementation of brain-like intelligence.Mater. Today62, 251–270.

[15] [15] Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L and Huang J. 2019. Recent advances in transistorbased artificial synapses.Adv. Funct. Mater.29, 1903700.

[16] [16] Sun K X, Chen J S and Yan X B. 2021. The future of memristors: materials engineering and neural networks.Adv. Funct. Mater.31, 2006773.

[17] [17] Zhou F C, Chen J W, Tao X M, Wang X R and Chai Y. 2019. 2D materials based optoelectronic memory: convergence of electronic memory and optical sensor.Research2019, 9490413.

[18] [18] He Y L, Jiang S S, Chen C S, Wan C L, Shi Y and Wan Q. 2021. Electrolyte-gated neuromorphic transistors for brain-like dynamic computing.J. Appl. Phys.130, 190904.

[19] [19] Tang J et al. 2019. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges.Adv. Mater.31, e1902761.

[20] [20] Woo J, Kim J H, Im J P and Moon S E. 2020. Recent advancements in emerging neuromorphic device technologies.Adv. Intell. Syst.2, 2070101.

[21] [21] Hong J, Li X, Xu N, Chen H, Cabrini S, Khizroev S, Bokor J and You L. 2020. A dual magnetic tunnel junction-based neuromorphic device.Adv. Intell. Syst.2, 2070120.

[22] [22] Kumar M, Abbas S, Lee J H and Kim J. 2019. Controllable digital resistive switching for artificial synapses and pavlovian learning algorithm.Nanoscale11, 15596–15604.

[23] [23] Zhao H B, Chen J K and Zhang H T. 2022. Perovskite nickelate ionotronics for AI and brain-machine interfaces.Mater. Lab1, 220038.

[24] [24] Jang J T, Kim D, Choi W S, Choi S J, Kim D M, Kim Y and Kim D H. 2020. One transistor–two memristor based on amorphous indium–gallium–zinc-oxide for neuromorphic synaptic devices.ACS Appl. Electron. Mater.2, 2837–2844.

[25] [25] Wang J J, Shi C Y, Sushko M L, Lan J L, Sun K X, Zhao J H, Liu X Y and Yan X B. 2021. Boost of the bio-memristor performance for artificial electronic synapses by surface reconstruction.ACS Appl. Mater. Interfaces13, 39641–39651.

[26] [26] Wang T Y et al. 2020. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application.Nano Lett.20, 4111–4120.

[27] [27] Lin X D, Feng Z Y, Xiong Y, Sun W W, Yao W C, Wei Y C, Wang Z L and Sun Q J. 2024. Piezotronic neuromorphic devices: principle, manufacture, and applications.Int. J. Extrem. Manuf.6, 032011.

[28] [28] Di Lauro M, De Salvo A, Sebastianella G C, Bianchi M, Carli S, Murgia M, Fadiga L and Biscarini F. 2020. Tunable short-term plasticity response in three-terminal organic neuromorphic devices.ACS Appl. Electron. Mater.2, 1849–1854.

[29] [29] Dong Z K, Sing Lai C, He Y F, Qi D L and Duan S K. 2019. Hybrid dual-complementary metal–oxide–semiconductor/memristor synapse-based neural network with its applications in image super-resolution.IET Circuits Devices Syst.13, 1241–1248.

[30] [30] Wang C H et al. 2022. Neuromorphic device based on silicon nanosheets.Nat. Commun.13, 5216.

[31] [31] Sharkawy A N. 2020. Principle of neural network and its main types: review.J. Adv. Appl. Comput. Math.7, 8–19.

[32] [32] Vabalas A, Gowen E, Poliakoff E and Casson A J. 2019. Machine learning algorithm validation with a limited sample size.PLoS One14, e0224365.

[33] [33] Wei J, Chu X, Sun X Y, Xu K, Deng H X, Chen J G, Wei Z M and Lei M. 2019. Machine learning in materials science.InfoMat1, 338–358.

[34] [34] Charbuty B and Abdulazeez A. 2021. Classification based on decision tree algorithm for machine learning.J. Appl. Sci. Technol. Trends2, 20–28.

[35] [35] Sagheer A, Zidan M and Abdelsamea M M. 2019. A novel autonomous perceptron model for pattern classification applications.Entropy21, 763.

[36] [36] Lauriola I, Gallicchio C and Aiolli F. 2020. Enhancing deep neural networks via multiple kernel learning.Pattern Recognit.101, 107194.

[37] [37] Xiao J X, Liu G, Wang K J and Si Y S. 2022. Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM.Comput. Electron. Agric.194, 106738.

[38] [38] Desai M and Shah M. 2021. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and convolutional neural network (CNN).Clin. eHealth4, 1–11.

[39] [39] Cassola S, Duhovic M, Schmidt T and May D. 2022. Machine learning for polymer composites process simulation—a review.CompositesB246, 110208.

[40] [40] Woo S Y, Choi K B, Lim S, Lee S T, Kim C H, Kang W M, Kwon D, Bae J H, Park B G and Lee J H. 2019. Synaptic device using a floating fin-body MOSFET with memory functionality for neural network.Solid State Electron.156, 23–27.

[41] [41] Bansal M, Goyal A and Choudhary A. 2022. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning.Decis. Anal. J.3, 100071.

[42] [42] Han J K, Oh J, Yun G J, Yoo D, Kim M S, Yu J M, Choi S Y and Choi Y K. 2021. Cointegration of single-transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware.Sci. Adv.7, eabg8836.

[43] [43] Lee S H and Sheng M. 2000. Development of neuron-neuron synapses.Curr. Opin. Neurobiol.10, 125–131.

[44] [44] Choi S, Yang J and Wang G. 2020. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing.Adv. Mater.32, e2004659.

[45] [45] Wang R L, Lei Z Y, Zhang Z M and Gao S C. 2022. Dendritic convolutional neural network.IEEJ Trans. Electr. Electron. Eng.17, 302–304.

[46] [46] Kirdin A, Sidorov S and Zolotykh N. 2022. Rosenblatt’s first theorem and frugality of deep learning.Entropy24, 1635.

[47] [47] Gupta M and Pandya S D. 2022. A comparative study on supervised machine learning algorithm.Int. J. Res. Appl. Sci. Eng. Technol.10, 1023–1028.

[48] [48] Kaya E. 2022. A new neural network training algorithm based on artificial bee colony algorithm for nonlinear system identification.Mathematics10, 3487.

[49] [49] Yang C, Oh S K, Yang B, Pedrycz W and Wang L. 2022. Hybrid fuzzy multiple SVM classifier through feature fusion based on convolution neural networks and its practical applications.Expert Syst. Appl.202, 117392.

[50] [50] Chauhan V and Tiwari A. 2022. Randomized neural networks for multilabel classification.Appl. Soft Comput.115, 108184.

[51] [51] Wu D W and Lisser A. 2023. A deep learning approach for solving linear programming problems.Neurocomputing520, 15–24.

[52] [52] ZahediNasab R and Mohseni H. 2020. Neuroevolutionary based convolutional neural network with adaptive activation functions.Neurocomputing381, 306–313.

[53] [53] Ertu˘grul F. 2018. A novel type of activation function in artificial neural networks: trained activation function.Neural Netw.99, 148–157.

[54] [54] Qian S, Liu H, Liu C, Wu S and Wong H S. 2018. Adaptive activation functions in convolutional neural networks.Neurocomputing272, 204–212.

[55] [55] Vareto R H, Linghu Y, Boult T E, Schwartz W R and Gnther M. 2024. Open-set face recognition with maximal entropy and Objectosphere loss.Image Vis. Comput.141, 104862.

[56] [56] Zhang H and Mu J H. 2021. A back propagation neural network-based method for intelligent decision-making.Complexity2021, 6610797.

[57] [57] Wang J H, Cui Z Q, Zhu H H, Meng L, Song W H and Liu X. 2024. A back propagation neural network-based approach for inverting layered seabed acoustic parameters in shallow waters.Front. Mar. Sci.11, 1349478.

[58] [58] Ganaie M A, Hu M H, Malik A K, Tanveer M and Suganthan P N. 2022. Ensemble deep learning: a review.Eng. Appl. Artif. Intell.115, 105151.

[59] [59] Abdel-Jaber H, Devassy D, Al Salam A, Hidaytallah L and El-Amir M. 2022. A review of deep learning algorithms and their applications in healthcare.Algorithms15, 71.

[60] [60] Choudhary K et al. 2022. Recent advances and applications of deep learning methods in materials science.npj Comput. Mater.8, 59.

[61] [61] Xu M L, Yoon S, Fuentes A and Park D S. 2023. A comprehensive survey of image augmentation techniques for deep learning.Pattern Recognit.137, 109347.

[62] [62] Mohammed A and Kora R. 2023. A comprehensive review on ensemble deep learning: opportunities and challenges.J. King Saud Univ., Comput. Inf. Sci.35, 757–774.

[63] [63] Forootan M M, Larki I, Zahedi R and Ahmadi A. 2022. Machine learning and deep learning in energy systems: a review.Sustainability14, 4832.

[64] [64] Gu C C and Li H. 2022. Review on deep learning research and applications in wind and wave energy.Energies15, 1510.

[65] [65] Zhang X, Liang Y, Li W, Liu C, Gu D A, Sun W B and Miao L Y. 2022. Development and evaluation of deep learning for screening dental caries from oral photographs.Oral Dis.28, 173–181.

[66] [66] Felder D, Femmer R, Bell D, Rall D, Pietzonka D, Henzler S, Linkhorst J and Wessling M. 2022. Coupled ionic–electronic charge transport in organic neuromorphic devices.Adv. Theory Simul.5, 2270016.

[67] [67] Mikolajick T, Park M H, Begon-Lours L and Slesazeck S. 2023. From ferroelectric material optimization to neuromorphic devices.Adv. Mater.35, e2206042.

[68] [68] Wang W X, Gao S, Li Y, Yue W J, Kan H, Zhang C W, Lou Z, Wang L L and Shen G Z. 2021. Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system.Adv. Funct. Mater.31, 2101201.

[69] [69] Ali A A A and Mallaiah S. 2022. Intelligent handwritten recognition using hybrid CNN architectures based-SVM classifier with dropout.J. King Saud Univ., Comput. Inf. Sci.34, 3294–3300

[70] [70] Han J K, Yun S Y, Lee S W, Yu J M and Choi Y K. 2022. A review of artificial spiking neuron devices for neural processing and sensing.Adv. Funct. Mater.32, 2204102.

[71] [71] AlBadani B, Shi R H and Dong J. 2022. A novel machine learning approach for sentiment analysis on twitter incorporating the universal language model fine-tuning and SVM.Appl. Syst. Innov.5, 13.

[72] [72] Ganaie M A and Tanveer M. 2022. KNN weighted reduced universum twin SVM for class imbalance learning.Knowl.-Based Syst.245, 108578.

[73] [73] Ahmad M, Al Mehedi M A, Yazdan M M S and Kumar R. 2022. Development of machine learning flood model using artificial neural network (ANN) at var river.Liquids2, 147–160.

[74] [74] Nie F, Wang H C, Song Q L, Zhao Y X, Shen J and Gong M Q. 2023. Image identification for two-phase flow patterns based on CNN algorithms.Int. J. Multiph. Flow152, 104067.

[75] [75] Zheng M H, Zhi K Y, Zeng J W, Tian C W and You L. 2022. A hybrid CNN for image denoising.J. Artif. Intell. Technol.2, 93–99.

[76] [76] Zhou W Y, Wang H and Wan Z B. 2022. Ore image classification based on improved CNN.Comput. Electr. Eng.99, 107819.

[77] [77] Zhang Q, Xiao J Y, Tian C W, Lin J C W and Zhang S C. 2023. A robust deformed convolutional neural network (CNN) for image denoising.CAAI Trans. Intell. Technol.8, 331–342.

[78] [78] Wang J Y, Li X L, Li J Z, Sun Q H and Wang H Y. 2022. NGCU: a new RNN model for time-series data prediction.Big Data Res.27, 100296.

[79] [79] Sasikala S, Ramesh S, Gomathi S, Balambigai S and Anbumani V. 2022. Transfer learning based recurrent neural network algorithm for linguistic analysis.Concurr. Comput. Pract. Exp.34, e6708.

[80] [80] Cao J, Zhang X M, Cheng H F, Qiu J, Liu X S, Wang M and Liu Q. 2022. Emerging dynamic memristors for neuromorphic reservoir computing.Nanoscale14, 289–298.

[81] [81] Tanaka G, Yamane T, Hroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D and Hirose A. 2019. Recent advances in physical reservoir computing: a review.Neural Netw.115, 100–123.

[82] [82] Wakabayashi S, Arie T, Akita S, Nakajima K and Takei K. 2022. A multitasking flexible sensor via reservoir computing.Adv. Mater.34, e2201663.

[83] [83] Lao J et al. 2022. Ultralow-power machine vision with self-powered sensor reservoir.Adv. Sci.9, e2106092.

[84] [84] Dora S and Kasabov N. 2021. Spiking neural networks for computational intelligence: an overview.Big Data Cogn. Comput.5, 67.

[85] [85] Iakymchuk T, Rosado-Muoz A, Guerrero-Martnez J F, Bataller-Mompen M and Francs-Vllora J V. 2015. Simplified spiking neural network architecture and STDP learning algorithm applied to image classification.EUR. J. Image Video Process.2015, 4.

[86] [86] Fang J H, Xie Z L, Cheng H T, Fan B, Xu H and Li P. 2022. Anomaly detection of diabetes data based on hierarchical clustering and CNN.Proc. Comput. Sci.199, 71–78.

[87] [87] Lukoeviius M and Jaeger H. 2009. Reservoir computing approaches to recurrent neural network training.Comput. Sci. Rev.3, 127–149.

[88] [88] Chen W B, Song L K, Wang S B, Zhang Z Y, Wang G Y, Hu G H and Gao S. 2023. Essential characteristics of memristors for neuromorphic computing.Adv. Electron. Mater.9, 2200833.

[89] [89] Markovi D, Mizrahi A, Querlioz D and Grollier J. 2020. Physics for neuromorphic computing.Nat. Rev. Phys.2, 499–510.

[90] [90] Liu H F et al. 2023. Artificial neuronal devices based on emerging materials: neuronal dynamics and applications.Adv. Mater.35, 2205047.

[91] [91] Shastri B J, Tait A N, Ferreira De Lima T, Pernice W H P, Bhaskaran H, Wright C D and Prucnal P R. 2021. Photonics for artificial intelligence and neuromorphic computing.Nat. Photon.15, 102–114.

[92] [92] Chen T J and Messner M C. 2023. Training material models using gradient descent algorithms.Int. J. Plast.165, 103605.

[93] [93] Wang P Y, Lei Y W, Ying Y M and Zhou D X. 2024. Differentially private stochastic gradient descent with lownoise.Neurocomputing585, 127557.

[94] [94] Fang L, Mao C Z, Wang H T, Ding Q, Jiao W Y, Li B S, Zhang Y B and Gong D W. 2024. Recent progress of organic artificial synapses in biomimetic sensory neural systems.J. Mater. Chem.C12, 8586–8610.

[95] [95] Fan H X, Shen Z H, Li W H, Tang X G, Zhao R K, Hu J and Wang K Y. 2024. Memristive synapses based on SrTiO3 thin film.Mater. Sci. Eng.309, 117623.

[96] [96] Qian Y Z, Li J Y, Li W, Hou C H, Feng Z Y, Shi W and Yi M D. 2024. High synaptic plasticity enabled by controlled ion migration in organic heterojunction memristors.J. Mater. Chem.C12, 9669–9676.

[97] [97] Xu M Y, Chen X R, Guo Y H, Wang Y, Qiu D, Du X C, Cui Y, Wang X F and Xiong J. 2023. Reconfigurable neuromorphic computing: materials, devices, and integration.Adv. Mater.35, 2301063.

[98] [98] Mahesh B. 2020. Machine learning algorithms—a review.Int. J. Sci. Res.9, 381–386.

[99] [99] Jordan M I and Mitchell T M. 2015. Machine learning: trends, perspectives, and prospects.Science349, 255–260.

[100] [100] Bian J Y, Liu Z Y, Tao Y, Wang Z Q, Zhao X N, Lin Y, Xu H Y and Liu Y C. 2024. Advances in memristor based artificial neuron fabrication-materials, models, and applications.Int. J. Extrem. Manuf.6, 012002.

[101] [101] Kim S G, Han J S, Kim H, Kim S Y and Jang H W. 2018. Recent advances in memristive materials for artificial synapses.Adv. Mater. Technol.3, 1800457.

[102] [102] Guo T et al. 2022. Versatile memristor for memory and neuromorphic computing.Nanoscale Horiz.7, 299–310.

[103] [103] Zhou W H, Wen S P, Liu Y, Liu L, Liu X and Chen L. 2023. Forgetting memristor based STDP learning circuit for neural networks.Neural Netw.158, 293–304.

[104] [104] Martins R A, Carlos E, Deuermeier J, Pereira M E, Martins R, Fortunato E and Kiazadeh A. 2022. Emergent solution based IGZO memristor towards neuromorphic applications.J. Mater. Chem.C10, 1991–1998.

[105] [105] Duan H, Cheng S Q, Qin L, Zhang X L, Xie B Y, Zhang Y and Jie W J. 2022. Low-power memristor based on two-dimensional materials.J. Phys. Chem. Lett.13, 7130–7138.

[106] [106] Zhou K et al. 2023. Manufacturing of graphene based synaptic devices for optoelectronic applications.Int. J. Extrem. Manuf.5, 042006.

[107] [107] Zhang X S, Wu C, Lv Y J, Zhang Y and Liu W. 2022. High-performance flexible polymer memristor based on stable filamentary switching.Nano Lett.22, 7246–7253.

[108] [108] Wang T Y, Ma S Y, Wright L G, Onodera T, Richard B C and McMahon P L. 2022. An optical neural network using less than 1 photon per multiplication.Nat. Commun.13, 123.

[109] [109] Tanim M M H, Templin Z and Zhao F. 2023. Natural organic materials based memristors and transistors for artificial synaptic devices in sustainable neuromorphic computing systems.Micromachines14, 235.

[110] [110] Zeng J M, Chen X H, Liu S Z, Chen Q L and Liu G. 2023. Organic memristor with synaptic plasticity for neuromorphic computing applications.Nanomaterials13, 803.

[111] [111] Yin L, Cheng R Q, Wen Y, Zhai B X, Jiang J, Wang H, Liu C S and He J. 2022. High-performance memristors based on ultrathin 2D copper chalcogenides.Adv. Mater.34, e2108313.

[112] [112] Liu Z H, Tang H, Cheng P P, Kang R Y, Zhou J, Zhao X, Zhao J and Zuo Z Y. 2023. High-performance and environmentally robust multilevel lead-free organotin halide perovskite memristors.Adv. Electron. Mater.9, 2201005.

[113] [113] Wang X Y, Zong Y X, Liu D Y, Yang J H and Wei Z M. 2023. Advanced optoelectronic devices for neuromorphic analog based on low-dimensional semiconductors.Adv. Funct. Mater.33, 2213894.

[114] [114] Xu X Y et al. 2020. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks.Laser Photon. Rev.14, 2000070.

[115] [115] Lin Y C, Yang W C, Chiang Y C and Chen W C. 2022. Recent advances in organic phototransistors: nonvolatile memory, artificial synapses, and photodetectors.Small Sci.2, 2100109.

[116] [116] Mo W A, Ding G L, Nie Z H, Feng Z H, Zhou K, Chen R S, Xie P, Shang G, Han S T and Zhou Y. 2023. Spatiotemporal modulation of plasticity in multi-terminal tactile synaptic transistor.Adv. Electron. Mater.9, 2200733.

[117] [117] Xia F, Xia T, Xiang L, Ding S J, Li S, Yin Y C, Xi M Q, Jin C H, Liang X L and Hu Y F. 2022. Carbon nanotube-based flexible ferroelectric synaptic transistors for neuromorphic computing.ACS Appl. Mater. Interfaces14, 30124–30132.

[118] [118] Yang Y T, Tien H C, Chueh C C and Lee W Y. 2022. Polymer synaptic transistors from memory to neuromorphic computing.Mater. Chem. Phys.287, 126263.

[119] [119] Xu H, Xue Y, Liu Z Q, Tang Q, Wang T Y, Gao X C, Qi Y P, Chen Y P, Ma C L and Jiang Y C. 2024. Van der Waals heterostructures for photoelectric, memory, and neural network applications.Small Sci.4, 2300213.

[120] [120] Qi J L, Wu Z X, Wang W B, Bao K, Wang L Z, Wu J K, Ke C X, Xu Y and He Q Y. 2023. Fabrication and applications of van der Waals heterostructures.Int. J. Extrem. Manuf.5, 022007.

[121] [121] Qin S W et al. 2024. Advances in two-dimensional heterojunction for sophisticated memristors.Mater. Today Phys.41, 101336.

[122] [122] Liu Q H et al. 2022. Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system.Nano Energy102, 107686.

[123] [123] Wang H Z, Chen Y Y and Li D H. 2023. Two/Quasi-two-dimensional perovskite-based heterostructures: construction, properties and applications.Int. J. Extrem. Manuf.5, 012004.

[124] [124] Huang M R, Li Z C and Zhu H W. 2022. Recent advances of graphene and related materials in artificial intelligence.Adv. Intell. Syst.4, 2200077.

[125] [125] Wu P S et al. 2022. Next-generation machine vision systems incorporating two-dimensional materials: progress and perspectives.InfoMat4, e12275.

[126] [126] Sun Y L, Ding Y T and Xie D. 2021. Mixed-dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications.Adv. Funct. Mater.31, 2105625.

[127] [127] Wang L S, Tsan D, Stoeber B and Walus K. 2012. Substratefree fabrication of self-supporting ZnO nanowire arrays.Adv. Mater.24, 3999–4004.

[128] [128] Prasad J, Singh A K, Yadav A N, Kumar A, Tomar M, Srivastava A, Kumar P, Gupta V and Singh K. 2020. Molybdenum disulfide-wrapped carbon nanotube-reduced graphene oxide (CNT/MoS2-rGO) nanohybrids for excellent and fast removal of electromagnetic interference pollution.ACS Appl. Mater. Interfaces12, 40828–40837.

[129] [129] Davies M. 2019. Benchmarks for progress in neuromorphic computing.Nat. Mach. Intell.1, 386–388.

[130] [130] Bera K P et al. 2018. Trapped photons induced ultrahigh external quantum efficiency and photoresponsivity in hybrid graphene/metal-organic framework broadband wearable photodetectors.Adv. Funct. Mater.28, 1804802.

[131] [131] Huang W, Chen J H, Wang G, Yao Y, Zhuang X M, Pankow R M, Cheng Y H, Marks T J and Facchetti A. 2021. Dielectric materials for electrolyte gated transistor applications.J. Mater. Chem.C9, 9348–9376.

[132] [132] Gkoupidenis P, Schaefer N, Garlan B and Malliaras G G. 2015. Neuromorphic functions in PEDOT: PSS organic electrochemical transistors.Adv. Mater.27, 7176–7180.

[133] [133] Ji J L, Wang H W, Liu R, Jiang X N, Zhang Q, Peng Y B, Sang S B, Sun Q J and Wang Z L. 2021. Dual-liquid-gated electrochemical transistor and its neuromorphic behaviors.Nano Energy87, 106116.

[134] [134] van Doremaele E R W, Stevens T, Ringeling S, Spolaor S, Fattori M and van de Burgt Y. 2024. Hardware implementation of backpropagation using progressive gradient descent forin situtraining of multilayer neural networks.Sci. Adv.10, eado8999.

[135] [135] Zhu Y X, Mao H W, Zhu Y, Wang X J, Fu C Y, Ke S, Wan C J and Wan Q. 2023. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review.Int. J. Extrem. Manuf.5, 042010.

[136] [136] Thomas A. 2013. Memristor-based neural networks.J. Phys. D: Appl. Phys.46, 093001.

[137] [137] Xiao Y Y, Jiang B, Zhang Z H, Ke S W, Jin Y Y, Wen X and Ye C. 2023. A review of memristor: material and structure design, device performance, applications and prospects.Sci. Technol. Adv. Mater.24, 2162323.

[138] [138] Cao K, Cai J M and Chen R. 2020. Inherently selective atomic layer deposition and applications.Chem. Mater.32, 2195–2207.

[139] [139] Kim D, Kim I J and Lee J S. 2021. Memory devices for flexible and neuromorphic device applications.Adv. Intell. Syst.3, 2000206.

[140] [140] Upadhyay N K, Jiang H, Wang Z R, Asapu S, Xia Q F and Joshua Yang J. 2019. Emerging memory devices for neuromorphic computing.Adv. Mater. Technol.4, 1800589.

[141] [141] Zhou F C et al. 2019. Optoelectronic resistive random access memory for neuromorphic vision sensors.Nat. Nanotechnol.14, 776–782.

[142] [142] Yang C, Sun B, Zhou G D, Guo T, Ke C, Chen Y Z, Shao J Y, Zhao Y and Wang H Y. 2023. Photoelectric memristor-based machine vision for artificial intelligence applications.ACS Mater. Lett.5, 504–526.

[143] [143] Yu R J, Li E L, Wu X M, Yan Y J, He W X, He L H, Chen J W, Chen H P and Guo T L. 2020. Electret-based organic synaptic transistor for neuromorphic computing.ACS Appl. Mater. Interfaces12, 15446–15455.

[144] [144] Wang Y, Zhu Y Y, Li Y Y, Zhang Y Q, Yang D R and Pi X D. 2022. Dual-modal optoelectronic synaptic devices with versatile synaptic plasticity.Adv. Funct. Mater.32, 2107973.

[145] [145] Wang T Y, Meng J L, Chen L, Zhu H, Sun Q Q, Ding S J, Bao W Z and Zhang D W. 2021. Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications.InfoMat3, 212–221.

[146] [146] Yu S M, Chen H Y, Gao B, Kang J F and Wong H S P. 2013. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture.ACS Nano7, 2320–2325.

[147] [147] Li E L, Wu X M, Chen Q Z, Wu S Y, He L H, Yu R J, Hu Y Y, Chen H P and Guo T L. 2021. Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing.Nano Energy85, 106010.

[148] [148] Weissbach A, Bongartz L M, Cucchi M, Tseng H, Leo K and Kleemann H. 2022. Photopatternable solid electrolyte for integrable organic electrochemical transistors: operation and hysteresis.J. Mater. Chem.C10, 2656–2662.

[149] [149] Gerasimov J Y, Gabrielsson R, Forchheimer R, Stavrinidou E, Simon D T, Berggren M and Fabiano S. 2019. An evolvable organic electrochemical transistor for neuromorphic applications.Adv. Sci.6, 1801339.

[150] [150] Ji J L et al. 2019.In situfabrication of organic electrochemical transistors on a microfluidic chip.Nano Res.12, 1943–1951.

[151] [151] Ni Y, Han H, Liu J Q, Choi Y, Liu L, Xu Z P, Yang L, Jiang C P, Gao W and Xu W T. 2022. A fibrous neuromorphic device for multi-level nerve pathways implementing knee jerk reflex and cognitive activities.Nano Energy104, 107898.

[152] [152] Kim M J et al. 2021. Completely foldable electronics based on homojunction polymer transistors and logics.Sci. Adv.7, eabg8169.

[153] [153] Kweon H et al. 2023. Ion trap and release dynamics enables nonintrusive tactile augmentation in monolithic sensory neuron.Sci. Adv.9, eadi3827.

[154] [154] Kim S et al. 2021. Artificial stimulus-response system capable of conscious response.Sci. Adv.7, eabe3996.

[155] [155] Choi Y, Ho D H, Kim S, Choi Y J, Roe D G, Kwak I C, Min J H, Han H, Gao W and Cho J H. 2023. Physically defined long-term and short-term synapses for the development of reconfigurable analog-type operators capable of performing health care tasks.Sci. Adv.9, eadg5946.

[156] [156] Ho D H, Roe D G, Choi Y Y, Kim S, Choi Y J, Kim D H, Jo S B and Cho J H. 2022. Non–von Neumann multi-input spike signal processing enabled by an artificial synaptic multiplexer.Sci. Adv.8, eabn1838.

[157] [157] Kim S et al. 2022. Neurorobotic approaches to emulate human motor control with the integration of artificial synapse.Sci. Adv.8, eabo3326.

[158] [158] Zhang H Z, Wang Z, Wang Z X, He B, Chen M X, Qi M, Liu Y T, Xin J W and Wei L. 2022. Recent progress of fiber-based transistors: materials, structures and applications.Front. Optoelectron.15, 2.

[159] [159] Song C M, Kim D, Lee S and Kwon H J. 2024. Ferroelectric 2D SnS2 analog synaptic FET.Adv. Sci.11, 2308588.

[160] [160] Hu X L, Hao R, Luo L L, Zhang Y W, Li Y T and Zhang Z M. 2024. Neuromorphic computing using a floating gate modulated photoelectric synaptic transistor.Laser Photon. Rev.18, 2400319.

[161] [161] Shin W, Im J, Koo R H, Kim J, Kwon K R, Kwon D, Kim J J, Lee J H and Kwon D. 2023. Self-curable synaptic ferroelectric FET arrays for neuromorphic convolutional neural network.Adv. Sci.10, 2207661.

[162] [162] Molina-Lopez F et al. 2019. Inkjet-printed stretchable and low voltage synaptic transistor array.Nat. Commun.10, 2676.

[163] [163] Huang W et al. 2024. Self-powered optoelectronic synaptic devices for neuromorphic computing with the lowest energy consumption density.ACS Photonics11, 3095–3104.

[164] [164] Kim M K, Park Y, Kim I J and Lee J S. 2020. Emerging materials for neuromorphic devices and systems.iScience23, 101846.

[165] [165] Yu J R, Wang Y F, Qin S S, Gao G Y, Xu C, Lin Wang Z and Sun Q J. 2022. Bioinspired interactive neuromorphic devices.Mater. Today60, 158–182.

[166] [166] Guo F, Song M L, Wong M C, Ding R, Io W F, Pang S Y, Jie W J and Hao J H. 2022. Multifunctional optoelectronic synapse based on ferroelectric van der Waals heterostructure for emulating the entire human visual system.Adv. Funct. Mater.32, 2108014.

[167] [167] Liu Q H et al. 2022. All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems.Nano Energy97, 107171.

[168] [168] Sun F Q, Lu Q F, Feng S M and Zhang T. 2021. Flexible arti ficial sensory systems based on neuromorphic devices.ACS Nano15, 3875–3899.

[169] [169] Zhang J Y, Dai S L, Zhao Y W, Zhang J H and Huang J. 2020. Recent progress in photonic synapses for neuromorphic systems.Adv. Intell. Syst.2, 1900136.

[170] [170] Sheridan P M, Cai F X, Du C, Ma W, Zhang Z Y and Lu W D. 2017. Sparse coding with memristor networks.Nat. Nanotechnol.12, 784–789.

[171] [171] Seo S et al. 2018. Artificial optic-neural synapse for colored and color-mixed pattern recognition.Nat. Commun.9, 5106.

[172] [172] Pradhan B et al. 2020. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice.Sci. Adv.6, eaay5225.

[173] [173] Jang H, Liu C Y, Hinton H, Lee M H, Kim H, Seol M, Shin H J, Park S and Ham D. 2020. An atomically thin optoelectronic machine vision processor.Adv. Mater.32, e2002431.

[174] [174] Sangwan V K and Hersam M C. 2020. Neuromorphic nanoelectronic materials.Nat. Nanotechnol.15, 517–528.

[175] [175] Lin P, Pan C and Wang Z L. 2018. Two-dimensional nanomaterials for novel piezotronics and piezophototronics.Mater. Today Nano4, 17–31.

[176] [176] Niu S M and Wang Z L. 2015. Theoretical systems of triboelectric nanogenerators.Nano Energy14, 161–192.

[177] [177] Chen Y H et al. 2019. Piezotronic graphene artificial sensory synapse.Adv. Funct. Mater.29, 1900959.

[178] [178] Yu J R, Yang X, Gao G, Xiong Y, Wang Y, Han J, Chen Y, Zhang H, Sun Q and Wang Z L. 2021. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure.Sci. Adv.7, eabd9117.

[179] [179] Sun T M et al. 2023. Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses.Nano-Micro. Lett.16, 14.

[180] [180] He J Q, Wei R L, Ge S P, Wu W Q, Guo J C, Tao J, Wang R, Wang C F and Pan C F. 2023. Artificial visualtactile perception array for enhanced memory and neuromorphic computations.InfoMat6, e12493.

[181] [181] Geng X Y, Hu L X, Zhuge F and Wei X H. 2022. Retina-inspired two-terminal optoelectronic neuromorphic devices with light-tunable short-term plasticity for self-adjusting sensing.Adv. Intell. Syst.4, 2200019.

[182] [182] Lee Y et al. 2018. Stretchable organic optoelectronic sensorimotor synapse.Sci. Adv.4, eaat7387.

[183] [183] Zeng M Y, He Y L, Zhang C X and Wan Q. 2021. Neuromorphic devices for bionic sensing and perception.Front. Neurosci.15, 690950.

[184] [184] Sun B, Guo T, Zhou G D, Ranjan S, Jiao Y X, Wei L, Zhou Y N and Wu Y A. 2021. Synaptic devices based neuromorphic computing applications in artificial intelligence.Mater. Today Phys.18, 100393.

[185] [185] Seo D G et al. 2019 Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics.Nano Energy65, 104035.

[186] [186] Han J K, Kang M G, Jeong J, Cho I, Yu J M, Yoon K J, Park I and Choi Y K. 2022. Artificial olfactory neuron for an insensor neuromorphic nose.Adv. Sci.9, e2106017.

[187] [187] Lu Q F, Sun F Q, Liu L, Li L H, Hao M M, Wang Z H and Zhang T. 2020. Bio-inspired flexible artificial synapses for pain perception and nerve injuries.npj Flex. Electron.4, 3.

[188] [188] Karbalaei Akbari M and Zhuiykov S. 2019. A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities.Nat. Commun.10, 3873.

[189] [189] van Doremaele E R W, Ji X, Rivnay J and van de Burgt Y. 2023. A retrainable neuromorphic biosensor for on-chip learning and classification.Nat. Electron.6, 765–770.

[190] [190] Gumyusenge A, Melianas A, Keene S T and Salleo A. 2021. Materials strategies for organic neuromorphic devices.Annu. Rev. Mater. Res.51, 47–71.

[191] [191] Fagerstrm J, Bng M, Wilhelms D and Chew M S. 2019. LiSep LSTM: a machine learning algorithm for early detection of septic shock.Sci. Rep.9, 15132.

[192] [192] Sherstinsky A. 2020. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network.PhysicaD404, 132306.

[193] [193] Milani S, Topin N, Veloso M and Fang F. 2024. Explainable reinforcement learning: a survey and comparative review.ACM Comput. Surv.56, 168.

[194] [194] Franceschelli G and Musolesi M. 2024. Reinforcement learning for generative AI: state of the art, opportunities and open research challenges.J. Artif. Intell. Res.79, 417–446.

[195] [195] Zhou W, Shen X Y, Yang X L, Wang J J and Zhang W. 2024. Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing.Int. J. Extrem. Manuf.6, 022001.

[196] [196] He Y L, Zhu L, Zhu Y, Chen C S, Jiang S S, Liu R, Shi Y and Wan Q. 2021. Recent progress on emerging transistor-based neuromorphic devices.Adv. Intell. Syst.3, 2000210.

[197] [197] Jang Y, Park J, Kang J M and Lee S Y. 2022. Amorphous InGaZnO (a-IGZO) synaptic transistor for neuromorphic computing.ACS Appl. Electron. Mater.4, 1427–1448.

[198] [198] Monalisha P, Kumar A P S, Wang X R and Piramanayagam S N. 2022. Emulation of synaptic plasticity on a cobalt-based synaptic transistor for neuromorphic computing.ACS Appl. Mater. Interfaces14, 11864–11872.

[199] [199] Song S, Kim J, Kwon S M, Jo J W, Park S K and Kim Y H. 2021. Recent progress of optoelectronic and all-optical neuromorphic devices: a comprehensive review of device structures, materials, and applications.Adv. Intell. Syst.3, 2000119.

[200] [200] Raifuku I, Chao Y P, Chen H H, Lin C F, Lin P E, Shih L C, Chen K T, Chen J Y, Chen J S and Chen P. 2021. Halide perovskite for low-power consumption neuromorphic devices.EcoMat3, e12142.

[201] [201] Zheng T Y, Yang W H, Sun J, Xiong X Y, Wang Z T, Li Z T and Zou X D. 2021. Enhancing performance of reservoir computing system based on coupled MEMS resonators.Sensors21, 2961.

[202] [202] Kim M S, Kim M S, Lee G J, Sunwoo S H, Chang S H, Song Y M and Kim D H. 2022. Bio-inspired artificial vision and neuromorphic image processing devices.Adv. Mater. Technol.7, 2270005.

Tools

Get Citation

Copy Citation Text

Huo Ziwei, Sun Qijun, Yu Jinran, Wei Yichen, Wang Yifei, Cho Jeong Ho, Wang Zhong Lin. Neuromorphic devices assisted by machine learning algorithms[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 42007

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: Jul. 11, 2024

Accepted: Sep. 9, 2025

Published Online: Sep. 9, 2025

The Author Email:

DOI:10.1088/2631-7990/adba1e

Topics