Journal of the Chinese Ceramic Society, Volume. 53, Issue 8, 2210(2025)

Electrochemical Performance of Composite Oxygen Electrode for Solid Oxide Cell

YU Bozheng1,2,3, LIU Changyang1,2,3, BIAN Liuzhen2,3, FU Peng2,3, PENG Jihua1,2,3, AN Shengli1,2,3, and PENG Jun1,2,3、*
Author Affiliations
  • 1School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
  • 2Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
  • 3Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources, Inner Mongolia University of Science and Technology, Ministry of Education, Baotou 014010, Inner Mongolia, China
  • show less
    References(33)

    [1] [1] PARK J H, JUNG C H, KIM K J, et al. Enhancing bifunctional electrocatalytic activities of oxygen electrodesviaincorporating highly conductive Sm3+ and Nd3+ double-doped ceria for reversible solid oxide cells[J]. ACS Appl Mater Interfaces, 2021, 13(2): 2496-2506.

    [2] [2] ZHANG W W, WANG H C, GUAN K, et al. Enhanced anode performance and coking resistance byin situexsolved multiple-twinned Co-Fe nanoparticles for solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2020, 12(1): 461-473.

    [3] [3] TONG X F, OVTAR S, BRODERSEN K, et al. A 4 × 4 cm2 nanoengineered solid oxide electrolysis cell for efficient and durable hydrogen production[J]. ACS Appl Mater Interfaces, 2019, 11(29): 25996-26004.

    [4] [4] STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy[J]. Renew Sustain Energy Rev, 2002, 6(5): 433-455.

    [5] [5] MATSUZAKI Y, YASUDA I. Electrochemical oxidation of H2 and CO in a H2-H2O-CO-CO2 system at the interface of a Ni-YSZ cermet electrode and YSZ electrolyte[J]. J Electrochem Soc, 2000, 147(5): 1630.

    [6] [6] SASAKI K, HORI Y, KIKUCHI R, et al. Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases[J]. J Electrochem Soc, 2002, 149(3): A227.

    [7] [7] LU C, WORRELL W L, GORTE R J, et al. SOFCs for direct oxidation of hydrocarbon fuels with Samaria-doped ceria electrolyte[J]. J Electrochem Soc, 2003, 150(3): A354.

    [8] [8] LIU Q, DONG X H, XIAO G L, et al. A novel electrode material for symmetrical SOFCs[J]. Adv Mater, 2010, 22(48): 5478-5482.

    [9] [9] PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(6775): 265-267.

    [10] [10] MALZBENDER J, STEINBRECH R W, SINGHEISER L. A review of advanced techniques for characterising SOFC behaviour[J]. Fuel Cells, 2009, 9(6): 785-793.

    [11] [11] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058): 935-939.

    [12] [12] ZHANG Y, CHEN B, GUAN D Q, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849): 246-251.

    [13] [13] JI Q Q, BI L, ZHANG J T, et al. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction[J]. Energy Environ Sci, 2020, 13(5): 1408-1428.

    [14] [14] JRGENSEN M J, MOGENSEN M. Impedance of solid oxide fuel cell LSM/YSZ composite cathodes[J]. J Electrochem Soc, 2001, 148: A433.

    [15] [15] TIETZ F. Thermal expansion of SOFC materials[J]. Ionics, 1999, 5(1-2): 129-139.

    [16] [16] JIANG S P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review[J]. J Mater Sci, 2008, 43(21): 6799-6833.

    [17] [17] TAN X Y, LIU N, MENG B, et al. Oxygen permeation behavior of La0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated CO2 exposure[J]. J Membr Sci, 2012, 389: 216-222.

    [18] [18] NIU Y H, LV W Q, CHEN D J, et al. A model study on correlation between microstructure-gas diffusion and Cr deposition in porous LSM/YSZ cathodes of solid oxide fuel cells[J]. Int J Hydrog Energy, 2019, 44(33): 18319-18329.

    [19] [19] FAN Y Y, CHEN Y, ABERNATHY H, et al. Improved long term performance stability of Sr-Fe-O infiltrated LSM/YSZ solid oxide fuel cells under high steam and high temperature[J]. ECS Trans, 2018, 85(13): 1277-1287.

    [20] [20] YAN J B, ZHAO Z, SHANG L, et al. Co-synthesized Y-stabilized Bi2O3 and Sr-substituted LaMnO3 composite anode for high performance solid oxide electrolysis cell[J]. J Power Sources, 2016, 319: 124-130.

    [21] [21] YU J F, LUO L H, CHENG L, et al. A-site engineering of the high-entropy perovskite Pr0.4La0.4Ba0.4Sr0.4Ca0.4Fe2O5+ cathode for intermediate-temperature SOFCs[J]. ACS Appl Mater Interfaces, 2024, 16(28): 36224-36235.

    [22] [22] CHEN K F, AI N, JIANG S P. Performance and stability of (La, Sr)MnO3-Y2O3-ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation conditions[J]. Int J Hydrog Energy, 2012, 37(14): 10517-10525.

    [23] [23] TAI L W, NASRALLAH M M, ANDERSON H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. part 1. The system La0.8Sr0.2Co1-yFeyO3[J]. Solid State Ion, 1995, 76(3-4): 259-271.

    [24] [24] ZHAO H L, XU N S, CHENG Y F, et al. Investigation of mixed conductor BaCo0.7Fe0.3-xYxO3- with high oxygen permeability[J]. J Phys Chem C, 2010, 114(41): 17975-17981.

    [25] [25] BARBUCCI A, VIVIANI M, PANIZZA M, et al. Analysis of the oxygen reduction process on SOFC composite electrodes[J]. J Appl Electrochem, 2005, 35(4): 399-403.

    [26] [26] GRNBACHER M, GTSCH T, OPITZ D A K, et al. CO2 reduction on the pre-reduced mixed ionic-electronic conducting perovskites La0.6Sr0.4FeO3- and SrTi0.7Fe0.3O3-[J]. ChemPhysChem, 2018, 19(1): 93-107.

    [27] [27] LI Y H, HU B B, XIA C R, et al. A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance[J]. J Mater Chem A, 2017, 5(39): 20833-20842.

    [28] [28] LIN Q H, BIAN L Z, LIU C Y, et al. Improved La0.8Sr0.2MnO3- oxygen electrode activity by introducing high oxygen ion conductor oxide for solid oxide steam electrolysis[J]. Int J Hydrog Energy, 2024, 49: 616-624.

    [29] [29] RODENBCHER C, SZOT K, WRANA D, et al. Localized electrochemical redox reactions in yttria-stabilized zirconia single crystals[J]. J Phys Energy, 2020, 2(3): 034008.

    [30] [30] HAN H R, HU X Y, ZHANG B Z, et al. Method to determine the oxygen reduction reaction kineticsviaporous dual-phase composites based on electrical conductivity relaxation[J]. J Mater Chem A, 2023, 11(5): 2460-2471.

    [31] [31] O`Hayre.Fuel cell fundamentals[M]. 2nd Ed. Wiley: 2009.

    [32] [32] DING H P, TAO Z T, LIU S, et al. A high-performing sulfur-tolerant and redox-stable layered perovskite anode for direct hydrocarbon solid oxide fuel cells[J]. Sci Rep, 2015, 5: 18129.

    [33] [33] TIETZ F, HAANAPPEL V A C, MAI A, et al. Performance of LSCF cathodes in cell tests[J]. J Power Sources, 2006, 156(1): 20-22.

    Tools

    Get Citation

    Copy Citation Text

    YU Bozheng, LIU Changyang, BIAN Liuzhen, FU Peng, PENG Jihua, AN Shengli, PENG Jun. Electrochemical Performance of Composite Oxygen Electrode for Solid Oxide Cell[J]. Journal of the Chinese Ceramic Society, 2025, 53(8): 2210

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 13, 2025

    Accepted: Sep. 5, 2025

    Published Online: Sep. 5, 2025

    The Author Email: PENG Jun (pengjun@imust.cn)

    DOI:10.14062/j.issn.0454-5648.20250026

    Topics