Journal of the Chinese Ceramic Society, Volume. 53, Issue 8, 2210(2025)
Electrochemical Performance of Composite Oxygen Electrode for Solid Oxide Cell
[1] [1] PARK J H, JUNG C H, KIM K J, et al. Enhancing bifunctional electrocatalytic activities of oxygen electrodesviaincorporating highly conductive Sm3+ and Nd3+ double-doped ceria for reversible solid oxide cells[J]. ACS Appl Mater Interfaces, 2021, 13(2): 2496-2506.
[2] [2] ZHANG W W, WANG H C, GUAN K, et al. Enhanced anode performance and coking resistance byin situexsolved multiple-twinned Co-Fe nanoparticles for solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2020, 12(1): 461-473.
[3] [3] TONG X F, OVTAR S, BRODERSEN K, et al. A 4 × 4 cm2 nanoengineered solid oxide electrolysis cell for efficient and durable hydrogen production[J]. ACS Appl Mater Interfaces, 2019, 11(29): 25996-26004.
[4] [4] STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy[J]. Renew Sustain Energy Rev, 2002, 6(5): 433-455.
[5] [5] MATSUZAKI Y, YASUDA I. Electrochemical oxidation of H2 and CO in a H2-H2O-CO-CO2 system at the interface of a Ni-YSZ cermet electrode and YSZ electrolyte[J]. J Electrochem Soc, 2000, 147(5): 1630.
[6] [6] SASAKI K, HORI Y, KIKUCHI R, et al. Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases[J]. J Electrochem Soc, 2002, 149(3): A227.
[7] [7] LU C, WORRELL W L, GORTE R J, et al. SOFCs for direct oxidation of hydrocarbon fuels with Samaria-doped ceria electrolyte[J]. J Electrochem Soc, 2003, 150(3): A354.
[8] [8] LIU Q, DONG X H, XIAO G L, et al. A novel electrode material for symmetrical SOFCs[J]. Adv Mater, 2010, 22(48): 5478-5482.
[9] [9] PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(6775): 265-267.
[10] [10] MALZBENDER J, STEINBRECH R W, SINGHEISER L. A review of advanced techniques for characterising SOFC behaviour[J]. Fuel Cells, 2009, 9(6): 785-793.
[11] [11] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058): 935-939.
[12] [12] ZHANG Y, CHEN B, GUAN D Q, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849): 246-251.
[13] [13] JI Q Q, BI L, ZHANG J T, et al. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction[J]. Energy Environ Sci, 2020, 13(5): 1408-1428.
[14] [14] JRGENSEN M J, MOGENSEN M. Impedance of solid oxide fuel cell LSM/YSZ composite cathodes[J]. J Electrochem Soc, 2001, 148: A433.
[15] [15] TIETZ F. Thermal expansion of SOFC materials[J]. Ionics, 1999, 5(1-2): 129-139.
[16] [16] JIANG S P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review[J]. J Mater Sci, 2008, 43(21): 6799-6833.
[17] [17] TAN X Y, LIU N, MENG B, et al. Oxygen permeation behavior of La0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated CO2 exposure[J]. J Membr Sci, 2012, 389: 216-222.
[18] [18] NIU Y H, LV W Q, CHEN D J, et al. A model study on correlation between microstructure-gas diffusion and Cr deposition in porous LSM/YSZ cathodes of solid oxide fuel cells[J]. Int J Hydrog Energy, 2019, 44(33): 18319-18329.
[19] [19] FAN Y Y, CHEN Y, ABERNATHY H, et al. Improved long term performance stability of Sr-Fe-O infiltrated LSM/YSZ solid oxide fuel cells under high steam and high temperature[J]. ECS Trans, 2018, 85(13): 1277-1287.
[20] [20] YAN J B, ZHAO Z, SHANG L, et al. Co-synthesized Y-stabilized Bi2O3 and Sr-substituted LaMnO3 composite anode for high performance solid oxide electrolysis cell[J]. J Power Sources, 2016, 319: 124-130.
[21] [21] YU J F, LUO L H, CHENG L, et al. A-site engineering of the high-entropy perovskite Pr0.4La0.4Ba0.4Sr0.4Ca0.4Fe2O5+ cathode for intermediate-temperature SOFCs[J]. ACS Appl Mater Interfaces, 2024, 16(28): 36224-36235.
[22] [22] CHEN K F, AI N, JIANG S P. Performance and stability of (La, Sr)MnO3-Y2O3-ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation conditions[J]. Int J Hydrog Energy, 2012, 37(14): 10517-10525.
[23] [23] TAI L W, NASRALLAH M M, ANDERSON H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. part 1. The system La0.8Sr0.2Co1-yFeyO3[J]. Solid State Ion, 1995, 76(3-4): 259-271.
[24] [24] ZHAO H L, XU N S, CHENG Y F, et al. Investigation of mixed conductor BaCo0.7Fe0.3-xYxO3- with high oxygen permeability[J]. J Phys Chem C, 2010, 114(41): 17975-17981.
[25] [25] BARBUCCI A, VIVIANI M, PANIZZA M, et al. Analysis of the oxygen reduction process on SOFC composite electrodes[J]. J Appl Electrochem, 2005, 35(4): 399-403.
[26] [26] GRNBACHER M, GTSCH T, OPITZ D A K, et al. CO2 reduction on the pre-reduced mixed ionic-electronic conducting perovskites La0.6Sr0.4FeO3- and SrTi0.7Fe0.3O3-[J]. ChemPhysChem, 2018, 19(1): 93-107.
[27] [27] LI Y H, HU B B, XIA C R, et al. A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance[J]. J Mater Chem A, 2017, 5(39): 20833-20842.
[28] [28] LIN Q H, BIAN L Z, LIU C Y, et al. Improved La0.8Sr0.2MnO3- oxygen electrode activity by introducing high oxygen ion conductor oxide for solid oxide steam electrolysis[J]. Int J Hydrog Energy, 2024, 49: 616-624.
[29] [29] RODENBCHER C, SZOT K, WRANA D, et al. Localized electrochemical redox reactions in yttria-stabilized zirconia single crystals[J]. J Phys Energy, 2020, 2(3): 034008.
[30] [30] HAN H R, HU X Y, ZHANG B Z, et al. Method to determine the oxygen reduction reaction kineticsviaporous dual-phase composites based on electrical conductivity relaxation[J]. J Mater Chem A, 2023, 11(5): 2460-2471.
[31] [31] O`Hayre.Fuel cell fundamentals[M]. 2nd Ed. Wiley: 2009.
[32] [32] DING H P, TAO Z T, LIU S, et al. A high-performing sulfur-tolerant and redox-stable layered perovskite anode for direct hydrocarbon solid oxide fuel cells[J]. Sci Rep, 2015, 5: 18129.
[33] [33] TIETZ F, HAANAPPEL V A C, MAI A, et al. Performance of LSCF cathodes in cell tests[J]. J Power Sources, 2006, 156(1): 20-22.
Get Citation
Copy Citation Text
YU Bozheng, LIU Changyang, BIAN Liuzhen, FU Peng, PENG Jihua, AN Shengli, PENG Jun. Electrochemical Performance of Composite Oxygen Electrode for Solid Oxide Cell[J]. Journal of the Chinese Ceramic Society, 2025, 53(8): 2210
Category:
Received: Jan. 13, 2025
Accepted: Sep. 5, 2025
Published Online: Sep. 5, 2025
The Author Email: PENG Jun (pengjun@imust.cn)