Opto-Electronic Advances, Volume. 6, Issue 10, 230076(2023)
Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation
[1] MT Mason. Toward robotic manipulation. Ann Rev Control Robot Auton Syst, 1-28(2018).
[2] A Billard, D Kragic. Trends and challenges in robot manipulation. Science, eaat8414(2019).
[3] JD Cui, J Trinkle. Toward next-generation learned robot manipulation. Sci Robot, eadb9461(2021).
[4] S Sundaram. How to improve robotic touch. Science, 768-769(2020).
[5] F Zhong, W Hu, PN Zhu, H Wang, C Ma et al. Piezoresistive design for electronic skin: from fundamental to emerging applications. Opto-Electron Adv(2022).
[6] FY Liu, S Deswal, A Christou, Y Sandamirskaya, M Kaboli et al. Neuro-inspired electronic skin for robots. Sci Robot, eabl7344(2022).
[7] GZ Li, SQ Liu, LQ Wang, R Zhu. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci Robot, eabc8134(2020).
[8] FY Liu, S Deswal, A Christou, Baghini M Shojaei, R Chirila et al. Printed synaptic transistor-based electronic skin for robots to feel and learn. Sci Robot, eabl7286(2022).
[9] ZX Zhao, JS Tang, J Yuan, YJ Li, Y Dai et al. Large-scale integrated flexible tactile sensor array for sensitive smart robotic touch. ACS Nano, 16784-16795(2022).
[10] YF Liu, SW Cui, JH Wei, HB Li, JY Hu et al. Centrosymmetric- and axisymmetric-patterned flexible tactile sensor for roughness and slip intelligent recognition. Adv Intellig Syst, 2100072(2021).
[11] YC Wang, X Wu, DQ Mei, LF Zhu, JN Chen. Flexible tactile sensor array for distributed tactile sensing and slip detection in robotic hand grasping. Sens Actuat A Phys, 111512(2019).
[12] YD Cao, T Li, Y Gu, H Luo, SQ Wang et al. Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture. Small, 1703902(2018).
[13] YC Yan, Z Hu, ZB Yang, WZ Yuan, CY Song et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci Robot, eabc8801(2021).
[14] A Dwivedi, A Ramakrishnan, A Reddy, K Patel, S Ozel et al. Design, modeling, and validation of a soft magnetic 3-D force sensor. IEEE Sens J, 3852-3863(2018).
[15] SP Xie, YF Zhang, H Zhang, MH Jin. Development of triaxis electromagnetic tactile sensor with adjustable sensitivity and measurement range for robot manipulation. IEEE Trans Instrum Meas, 1-9(2022).
[16] JA Barreiros, A Xu, S Pugach, N Iyengar, G Troxell et al. Haptic perception using optoelectronic robotic flesh for embodied artificially intelligent agents. Sci Robot, eabi6745(2022).
[17] B Ward-Cherrier, N Pestell, L Cramphorn, B Winstone, ME Giannaccini et al. The TacTip family: soft optical tactile sensors with 3D-printed biomimetic morphologies. Soft Robot, 216-227(2018).
[18] WZ Yuan, SY Dong, EH Adelson. GelSight: high-resolution robot tactile sensors for estimating geometry and force. Sensors, 2762(2017).
[19] V Biazi-Neto, CAF Marques, A Frizera-Neto, AG Leal-Junior. FBG-embedded robotic manipulator tool for structural integrity monitoring from critical strain-stress pair estimation. IEEE Sens J, 5695-5702(2022).
[20] V Biazi-Neto, CAF Marques, A Frizera-Neto, AG Leal-Junior. FBG-based sensing system to improve tactile sensitivity of robotic manipulators working in unstructured environments. Sens Actuat A Phys, 114473(2023).
[21] J Borràs. Effective grasping enables successful robot-assisted dressing. Sci Robot, eabo7229(2022).
[22] B Shih, D Shah, JX Li, TG Thuruthel, YL Park et al. Electronic skins and machine learning for intelligent soft robots. Sci Robot, eaaz9239(2020).
[23] JH Koo, HW Yun, WC Lee, SH Sunwoo, HJ Shim et al. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electron Adv, 210131(2022).
[24] ZM Ding, ZY Zhang. 2D tactile sensor based on multimode interference and deep learning. Opt Laser Technol, 106760(2021).
[25] J Pan, Z Zhang, CP Jiang, L Zhang, LM Tong. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale, 17538-17544(2020).
[26] Meerbeek IM Van, Sa CM De, RF Shepherd. Soft optoelectronic sensory foams with proprioception. Sci Robot, eaau2489(2018).
[27] A Leal-Junior, L Avellar, V Biazi, MS Soares, A Frizera et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv, 210098(2022).
[28] W Yu, N Yao, J Pan, W Fang, X Li et al. Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers. Opto-Electron Adv, 210101(2022).
[29] LY Li, YF Liu, CY Song, SF Sheng, LY Yang et al. Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv Fiber Mater, 475-486(2022).
[30] HC Zhao, K O'Brien, S Li, RF Shepherd. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci Robot, eaai7529(2016).
[32] L Zhang, J Pan, Z Zhang, H Wu, N Yao et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv, 190022(2020).
[33] Y Tang, LT Yu, J Pan, N Yao, WD Geng et al. Optical nanofiber skins for multifunctional humanoid tactility. Adv Intellig Syst, 2200203(2023).
[34] N Yao, XY Wang, SQ Ma, XD Song, S Wang et al. Single optical microfiber enabled tactile sensor for simultaneous temperature and pressure measurement. Photon Res, 2040-2046(2022).
[35] L Massari, G Fransvea, J D’Abbraccio, M Filosa, G Terruso et al. Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin. Nat Mach Intellig, 425-435(2022).
[36] HD Bai, S Li, J Barreiros, YQ Tu, CR Pollock et al. Stretchable distributed fiber-optic sensors. Science, 848-852(2020).
[37] B Lee. Review of the present status of optical fiber sensors. Opt Fiber Technol, 57-79(2003).
[38] YP Li, SJ Tan, LY Yang, LY Li, F Fang et al. Optical microfiber neuron for finger motion perception. Adv Fiber Mater, 226-234(2022).
[39] CP Jiang, Z Zhang, J Pan, YC Wang, L Zhang et al. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv Mater Technol, 2100285(2021).
[40] JY Zhou, Q Shao, C Tang, F Qiao, TQ Lu et al. Conformable and compact multiaxis tactile sensor for human and robotic grasping via anisotropic waveguides. Adv Mater Technol, 2200595(2022).
[41] VP Patil, JD Sandt, M Kolle, J Dunkel. Topological mechanics of knots and tangles. Science, 71-75(2020).
[42] J Takeuchi, K Yamanishi. A unifying framework for detecting outliers and change points from time series. IEEE Trans Knowledge Data Eng, 482-492(2006).
[43] KW Nan, S Babaee, WW Chan, JLP Kuosmanen, VR Feig et al. Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a quipu. Nat Biomed Eng, 1092-1104(2022).
[44] HP Zhang, S Oh, M Mahato, H Yoo, IK Oh. Knot‐architectured fabric actuators based on shape memory fibers. Adv Funct Mater, 2205732(2022).
[45] Y Xie, DW Cai, H Wu, J Pan, N Zhou et al. Mid-infrared chalcogenide microfiber knot resonators. Photon Res, 616-621(2020).
[46] WJ Wang, HHP Yiu, WJ Li, VAL Roy. The principle and architectures of optical stress sensors and the progress on the development of microbend optical sensors. Adv Opt Mater, 2001693(2021).
Get Citation
Copy Citation Text
Jing Pan, Qi Wang, Shuaikang Gao, Zhang Zhang, Yu Xie, Longteng Yu, Lei Zhang. Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation[J]. Opto-Electronic Advances, 2023, 6(10): 230076
Category: Research Articles
Received: May. 8, 2023
Accepted: Aug. 9, 2023
Published Online: Mar. 13, 2024
The Author Email: Longteng Yu (LTYu), Lei Zhang (LZhang)