Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 4, 508(2022)

Technical research of composite residual network in low illumination image enhancement

Xing-rui WANG, Yan PIAO*, and Yu-mo WANG
Author Affiliations
  • School of Electronic Information Engineering,Changchun University of Science and Technology,Changchun 130022,China
  • show less
    Figures & Tables(13)
    Overall network structure of this paper
    Composite residual module
    Residual unit
    Image reconstruction module
    Influence of different loss weights on experimental results
    Visual subjective contrast on synthetic low illumination images.(a)Ship;(b)Indoor scenes;(c)Airplane;(d)Bus;(e)Roller coaste.
    Visual subjective comparison of real low illumination images in LOL dataset.(a)Sculpture 1;(b)Clock;(c)House;(d)Sculpture 2;(e)Trees.
    Visual subjective comparison of real low illumination images in Exdark dataset.(a)Dragon boat;(b)Castle;(c)People;(d)Road;(e)Room.
    • Table 1. Comparison of evaluation indicators in Fig.5

      View table
      View in Article

      Table 1. Comparison of evaluation indicators in Fig.5

      Evaluation

      indicator

      0.9-0.10.1-0.90.7-0.3
      HousePSNR/dB15.82114.58619.354
      SSIM0.5810.420.853
      MSE1 702.2412 262.009977.44
      TreePSNR/dB19.958516.95722.459
      SSIM0.85140.6860.846
      MSE656.49121 330.356684.981
      StructurePSNR/dB21.587919.28222.524
      SSIM0.86480.7740.865
      MSE451.1169767.206449.708
    • Table 2. Comparison of objective evaluation indexes of each image in Fig.6

      View table
      View in Article

      Table 2. Comparison of objective evaluation indexes of each image in Fig.6

      ImageEvaluation indicatorHEaMSRCRMSRCPLIMELNetOur
      Ship imagePSNR/dB14.53216.74412.11911.75020.96821.497
      SSIM0.8480.8940.7780.7110.9550.956
      MSE2 290.2311 376.1393 991.7534 345.288520.263498.322
      Indoor scenes imagePSNR/dB19.15815.82011.25613.92120.10321.117
      SSIM0.8350.7560.7440.7430.9200.917
      MSE789.3221 702.4624 868.3922 635.626634.940611.056
      Airplane imagePSNR/dB16.38513.50012.20312.76813.37419.017
      SSIM0.6040.4130.8390.7510.8940.955
      MSE1 494.6252 904.4673 915.2263 437.7612 989.9081 892.217
      Bus imagePSNR/dB23.96015.4517.84815.87222.03621.746
      SSIM0.8790.8220.5350.8250.9030.897
      MSE261.2501 853.02910 670.4851 682.118406.809492.947
      Roller coaster imagePSNR/dB12.03910.58212.03912.83320.42322.060
      SSIM0.6410.5990.6410.7370.9100.932
      MSE4 065.3514 282.4674 065.3514 263.441589.814451.394
    • Table 3. Comparison of objective evaluation indexes of each image in Fig.7

      View table
      View in Article

      Table 3. Comparison of objective evaluation indexes of each image in Fig.7

      ImageEvaluation indicatorHEaMSRCRMSRCPLIMELNetOur
      Sculpture1PSNR/dB16.07218.60117.16419.29524.60825.044
      SSIM0.7090.7980.8720.8950.9230.930
      MSE2 280.1061 790.2731 859.2711 344.615225.013207.573
      ClockPSNR/dB12.09712.51615.46116.11220.08225.022
      SSIM0.7260.6150.8520.8630.8760.914
      MSE4 012.0733 642.8591 848.9161 591.709637.949204.582
      HousePSNR/dB18.41716.59417.54513.35314.44819.354
      SSIM0.8460.7950.8360.7310.6650.853
      MSE936.0741 424.4781 144.3663 004.3952 334.539977.44
      Sculpture2PSNR/dB21.39215.11610.62525.29713.63922.524
      SSIM0.8490.7070.7480.8740.7930.865
      MSE471.9322 001.8775 630.381692.0292 812.742449.708
      TreesPSNR/dB13.79114.34313.73216.23318.78822.459
      SSIM0.7580.6540.7050.8350.8270.876
      MSE2 715.9522 391.8882 752.8631 547.803859.374684.981
    • Table 4. Comparison of objective evaluation indexes of each image in Fig.8

      View table
      View in Article

      Table 4. Comparison of objective evaluation indexes of each image in Fig.8

      ImageEvaluation indicatorHEaMSRCRMSRCPLIMELNetOur
      Dragon boatAverage58.102123.25987.48641.76228.20457.208
      Standard Deviation35.40744.26141.45530.57929.89646.552
      CastleAverage68.753122.313147.91885.60883.602136.038
      Standard Deviation42.35770.23638.46235.25544.97157.627
      PeopleAverage67.002120.490108.00149.60233.994111.076
      Standard Deviation36.95939.31641.07830.07532.01342.216
      RoadAverage78.965129.138134.42965.99059.21983.170
      Standard Deviation49.02358.11852.49037.42039.63651.705
      RoomAverage90.558124.962141.68878.83586.300118.723
      Standard Deviation48.62659.64752.33441.58949.47356.793
    • Table 5. Comparison of average running time of each algorithm

      View table
      View in Article

      Table 5. Comparison of average running time of each algorithm

      AlgorithmTime/s
      HE0.349
      aMSRCR0.483
      MSRCP0.900
      LIME27.539
      LNet5.791
      Our2.575
    Tools

    Get Citation

    Copy Citation Text

    Xing-rui WANG, Yan PIAO, Yu-mo WANG. Technical research of composite residual network in low illumination image enhancement[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(4): 508

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 30, 2021

    Accepted: --

    Published Online: Jun. 20, 2022

    The Author Email: Yan PIAO (piaoyan@cust.edu.cn)

    DOI:10.37188/CJLCD.2021-0228

    Topics