Laser & Optoelectronics Progress, Volume. 60, Issue 18, 1811006(2023)
Research Progress of Terahertz Single-Pixel Imaging and Its Dynamic Mask Materials
[1] Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 679-692(1996).
[2] Gong Y D, Tang J X, Pang K. Porosity detection in CFRP using reflective terahertz imaging[J]. Journal of Optoelectronics and Advanced Materials, 24, 413-418(2022).
[3] Shen Y C, Lo T, Taday P F et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging[J]. Applied Physics Letters, 86, 1-3(2005).
[4] Sun Q S, He Y Z, Liu K et al. Recent advances in terahertz technology for biomedical applications[J]. Quantitative Imaging in Medicine and Surgery, 7, 345-355(2017).
[5] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 20, 1716-1718(1995).
[6] Wang B, Wang X K, Yu Y et al. Terahertz linear array fast scanning imaging[J]. Chinese Journal of Lasers, 46, 0614029(2019).
[7] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).
[8] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).
[9] Zhao Z D, Yang Z H, Yu Y J. Research progress of single pixel imaging technology[J]. Chinese Journal of Lasers, 49, 1917001(2022).
[10] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 52, 5406-5425(2006).
[11] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).
[12] Yang M C, Wu Y, Feng G Y. Research progress on underwater ghost imaging[J]. Acta Optica Sinica, 42, 1701003(2022).
[13] Sun M J, Yan S M, Wang S Y. Reconstruction algorithms for ghost imaging and single-pixel imaging[J]. Laser & Optoelectronics Progress, 59, 0200001(2022).
[14] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).
[15] Sinha A, Lee J, Li S et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).
[16] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016).
[17] Chen S C, Du L H, Meng K et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 44, 21-24(2018).
[18] Zanotto L, Piccoli R, Dong J et al. Time-domain terahertz compressive imaging[J]. Optics Express, 28, 3795-3802(2020).
[19] Augustin S, Hieronymus J, Jung P et al. Compressed sensing in a fully non-mechanical 350 GHz imaging setting[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 36, 496-512(2015).
[20] Liu S L, Hu X X, Lin W Q et al. Terahertz compressed sensing imaging based on line array detection[J]. Optics and Lasers in Engineering, 168, 107685(2023).
[21] Augustin S, Jung P, Frohmann S et al. Terahertz dynamic aperture imaging at standoff distances using a compressed sensing protocol[J]. IEEE Transactions on Terahertz Science and Technology, 9, 364-372(2019).
[22] Olivieri L, Gongora J S T, Pasquazi A et al. Time-resolved nonlinear ghost imaging[J]. ACS Photonics, 5, 3379-3388(2018).
[23] Zhang Z B, Ye J Q, Deng Q W et al. Image-free real-time detection and tracking of fast moving object using a single-pixel detector[J]. Optics Express, 27, 35394-35401(2019).
[24] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).
[25] Shen H, Gan L, Newman N et al. Spinning disk for compressive imaging[J]. Optics Letters, 37, 46-48(2011).
[26] Duan P, Wang Y Y, Xu D G et al. Single pixel imaging with tunable terahertz parametric oscillator[J]. Applied Optics, 55, 3670-3675(2016).
[27] Ermeydan E Ş, Çankaya İ. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications[C], 1926, 020040(2018).
[28] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).
[29] Chen H T, Padilla W J, Zide J M O et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).
[30] Chan W L, Chen H T, Taylor A J et al. A spatial light modulator for terahertz beams[J]. Applied Physics Letters, 94, 213511(2009).
[31] Shrekenhamer D, Montoya J, Krishna S et al. Four-color metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials, 1, 905-909(2013).
[32] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).
[33] Rout S, Sonkusale S. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation[J]. Optics Express, 24, 14618-14631(2016).
[34] Rout S, Sonkusale S R. A low-voltage high-speed terahertz spatial light modulator using active metamaterial[J]. APL Photonics, 1, 086102(2016).
[35] Sensale-Rodriguez B, Rafique S, Yan R S et al. Terahertz imaging employing graphene modulator arrays[J]. Optics Express, 21, 2324-2330(2013).
[36] Malevich Y, Ergoktas M S, Bakan G et al. Video-speed graphene modulator arrays for terahertz imaging applications[J]. ACS Photonics, 7, 2374-2380(2020).
[37] Chen B W, Wu J B, Li W L et al. Programmable terahertz metamaterials with non-volatile memory[J]. Laser & Photonics Reviews, 16, 2100472(2022).
[38] Li W L, Hu X M, Wu J B et al. Dual-color terahertz spatial light modulator for single-pixel imaging[J]. Light: Science & Applications, 11, 191(2022).
[39] Chen Q, Jiang Z P, Xu G X et al. Near-field terahertz imaging with a dynamic aperture[J]. Optics Letters, 25, 1122-1124(2000).
[40] Busch S, Scherger B, Scheller M et al. Optically controlled terahertz beam steering and imaging[J]. Optics Letters, 37, 1391-1393(2012).
[41] Shang Y J, Wang X K, Sun W F et al. Terahertz image reconstruction based on compressed sensing and inverse Fresnel diffraction[J]. Optics Express, 27, 14725-14735(2019).
[42] Chen K J, Bu T, Bai Y et al. Inkjet-printed random coding metal particles for modulation enhancement of an optical-controlled terahertz wave modulator[J]. Optical and Quantum Electronics, 48, 66(2016).
[43] Wen T L, Zhang D N, Wen Q Y et al. Enhanced optical modulation depth of terahertz waves by self-assembled monolayer of plasmonic gold nanoparticles[J]. Advanced Optical Materials, 4, 1974-1980(2016).
[44] Li Y P, Zhang D N, Liao Y L et al. Interface engineered germanium for infrared THz modulation[J]. Optical Materials, 111, 110659(2021).
[45] Lee G, Maeng I, Kang C et al. High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate[J]. Applied Physics Letters, 112, 111101(2018).
[46] Shi Z W, Cao X X, Wen Q Y et al. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 6, 1700620(2018).
[47] Wen Q Y, He Y L, Yang Q H et al. High-performance photo-induced spatial terahertz modulator based on micropyramid silicon array[J]. Advanced Materials Technologies, 5, 1901058(2020).
[48] Stantchev R I, Yu X, Blu T et al. Real-time terahertz imaging with a single-pixel detector[J]. Nature Communications, 11, 2535(2020).
[49] Stantchev R I, Phillips D B, Hobson P et al. Compressed sensing with near-field THz radiation[J]. Optica, 4, 989-992(2017).
Get Citation
Copy Citation Text
Wanxia Huang, Xiaoxiao Chen, Xueguang Lu. Research Progress of Terahertz Single-Pixel Imaging and Its Dynamic Mask Materials[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811006
Category: Imaging Systems
Received: Jul. 17, 2023
Accepted: Aug. 22, 2023
Published Online: Sep. 20, 2023
The Author Email: Xueguang Lu (1257400688@qq.com)