Optical Technique, Volume. 48, Issue 3, 364(2022)

Research on segmentation method of OCT retinal image fluid

WANG Teng, CHEN Minghui, KE Shuting, YUAN yuan, LAI xiangling, HUANG Duowen, LIU Duxin, and MA Xinhong
Author Affiliations
  • [in Chinese]
  • show less
    References(28)

    [1] [1] Marmor M F. Mechanisms of fluid accumulation in retinal edema[J]. Documenta Ophthalmologica,1999,97(3-4):239-249.

    [2] [2] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science,1991,254(5035):1178-1181.

    [3] [3] J W Yau, S L Rogers, R Kawasaki, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care,2012,35(3):556-564.

    [4] [4] DeBuc D C. A review of algorithms for segmentation of retinal image data using optical coherence tomography[M]. USA:INTECH Open Access Publisher,2011:15-54.

    [5] [5] Schmidt-Erfurth U, Sadeghipour A, Gerendas B S, et al. Artificial intelligence in retina[J]. Progress in Retinal and Eye Research,2018,67(6):1-29.

    [6] [6] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature,2015,521(7553):436-444.

    [7] [7] Long J, Shelhamer E, Darrell, T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651.

    [8] [8] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]∥Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Switzerland:Springer,Cham,2015:234-241.

    [9] [9] Devalla S K, Renukanand P K, Sreedhar B K, et al. DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images[J]. Biomedical Optics Express,2018,9(7):3244-3265.

    [10] [10] Gorgi Zadeh S, Wintergerst M W M, Wiens V, et al. CNNs enable accurate and fast segmentation of drusen in optical coherence tomography[M]∥ Switzerland: Springer,2017:65-73.

    [11] [11] Venhuizen FG, van Ginneken B, Liefers B, et al. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography[J]. Biomedical Optics Express,2018,9(4):1545.

    [12] [12] Chen Z, Li D, Shen H, et al. Automated segmentation of fluid regions in optical coherence tomography B-scan images of age-related macular degeneration[J]. Optics and Laser Technology,2020,122(2):105830.

    [13] [13] Ben-Cohen A, Mark D, Kovler I, et al. Retinal layers segmentation using fully convolutional network in OCT images[J]. RSIP Vision,2017,198(1):1-8.

    [14] [14] Lu D, Heisler M, Lee S, et al. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network[J]. Medical Image Analysis,2019,54(4):100-110.

    [15] [15] Roy A G, Conjeti S, Karri S P K, et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks[J]. Biomedical Optics Express,2017,8(8):3627-3642.

    [16] [16] Z Gu, J Cheng, H Fu, et al. CE-net: Context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging,2019,38(10):2281-2292.

    [17] [17] Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database[C]∥Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE,2009:248-255.

    [18] [18] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA: IEEE,2016:770-778.

    [19] [19] Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. Unet++: A nested u-net architecture for medical image segmentation[C]∥ Deep learning in medical image analysis and multimodal learning for clinical decision support. Switzerland:Springer,Cham,2018:3-11.

    [20] [20] Lee C Y, Xie S, Gallagher P, et al. Deeply-supervised nets[C]∥ Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics. San Diego:PMLR,2015:562-570.

    [21] [21] Fu H, Cheng J, Xu Y, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Transactions on Medical Imaging,2018,37(7):1597-1605.

    [22] [22] Abraham N, Khan N M. A novel focal tversky loss function with improved attention u-net for lesion segmentation[C]∥Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging(ISBI 2019), Venice,Italy:IEEE,2019:683-687.

    [23] [23] Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach,USA:IEEE,2019:3146-3154.

    [24] [24] Liu W, Sun Y, Ji Q. MDAN-UNet: multi-scale and dual attention enhanced nested u-net architecture for segmentation of optical coherence tomography images[J]. Algorithms,2020,13(3):60.

    [25] [25] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).USA:IEEE,2020:11534-11542.

    [26] [26] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.

    [27] [27] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake city,USA:IEEE,2018:7132-7141.

    [28] [28] Bogunovic' H, Venhuizen F, Klimscha S, et al. RETOUCH: The retinal OCT fluid detection and segmentation benchmark and challenge[J]. IEEE Transactions on Medical Imaging,2019,38(8):1858-1874.

    Tools

    Get Citation

    Copy Citation Text

    WANG Teng, CHEN Minghui, KE Shuting, YUAN yuan, LAI xiangling, HUANG Duowen, LIU Duxin, MA Xinhong. Research on segmentation method of OCT retinal image fluid[J]. Optical Technique, 2022, 48(3): 364

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 7, 2022

    Accepted: --

    Published Online: Jan. 20, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics