Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1817001(2024)

Classification of Microscopic Hyperspectral Images of Cancerous Tissue Based on Deep Learning

Yong Zhang1,2, Danfei Huang1,2、*, Lechao Zhang1,2, Lili Zhang1,2, Yao Zhou1,2, and Hongyu Tang1,2
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • 2Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528400, Guangdong, China
  • show less
    References(26)

    [2] Yi C J, Chen J, Wang S W. Domestic garbage image classification based on lightweight convolutional neural network[J]. Software Engineering, 26, 41-45, 24(2023).

    [3] Shi J F, Feng B, Chen Y H et al. Lung nodule CT image classification based on adaptive aggregate weight federated learning[J]. Laser & Optoelectronics Progress, 60, 2210003(2023).

    [8] Qiao Y Y. Abnormal target detection in hyperspectral images based on attention mechanism[J]. Laser Journal, 44, 196-201(2023).

    [10] Li W, Lü M, Chen T H et al. Application of a hyperspectral image in medical field: a review[J]. Journal of Image and Graphics, 26, 1764-1785(2021).

    [14] Zhang M, Han B, Wang Z et al. Papillary thyroid carcinoma pathological image classification based on deep active learning[J]. Journal of Nanjing University (Natural Science), 57, 21-28(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yong Zhang, Danfei Huang, Lechao Zhang, Lili Zhang, Yao Zhou, Hongyu Tang. Classification of Microscopic Hyperspectral Images of Cancerous Tissue Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1817001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Jan. 27, 2024

    Accepted: Mar. 7, 2024

    Published Online: Sep. 9, 2024

    The Author Email: Danfei Huang (danfei_huang@163.com)

    DOI:10.3788/LOP240755

    CSTR:32186.14.LOP240755

    Topics