Chinese Optics Letters, Volume. 19, Issue 11, 111401(2021)

Wideband chaos generation based on a dual-mode microsquare laser with optical feedback

Chunguang Ma1,2, Jiliang Wu1,2, Jinlong Xiao1,2, Yongtao Huang1,2, Yali Li1,2, Yuede Yang1,2、*, and Yongzhen Huang1,2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(26)

    [1] M. Sciamanna, K. A. Shore. Physics and applications of laser diode chaos. Nat. Photon., 9, 151(2015).

    [2] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photon., 2, 728(2008).

    [3] P. Li, Y. Guo, Y. Guo, Y. Fan, X. Guo, X. Liu, K. Li, K. A. Shore, Y. Wang, A. Wang. Ultrafast fully photonic random bit generator. J. Lightwave Technol., 36, 2531(2018).

    [4] M. Li, Y. Chen, Y. Song, C. Zeng, X. Zhang. DOE effect on BER performance in MSK space uplink chaotic optical communication. Chin. Opt. Lett., 18, 070601(2020).

    [5] J. Ke, L. Yi, G. Xia, W. Hu. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate. Opt. Lett., 43, 1323(2018).

    [6] X. Wang, S. Li, X. Jiang, J. Hu, M. Xue, S. Xu, S. Pan. High-accuracy optical time delay measurement in fiber link. Chin. Opt. Lett., 17, 060601(2019).

    [7] Z. Hu, B. Wang, L. Wang, T. Zhao, H. Han, Y. Wang, A. Wang. Improving spatial resolution of chaos OTDR using significant-bit correlation detection. IEEE Photon. Technol. Lett., 31, 1029(2019).

    [8] F. Y. Lin, J. M. Liu. Chaotic lidar. IEEE J. Sel. Top. Quantum Electron., 10, 991(2004).

    [9] Y. Xiao, T. Deng, Z.-M. Wu, J.-G. Wu, X.-D. Lin, X. Tang, L.-B. Zeng, G.-Q. Xia. Chaos synchronization between arbitrary two response VCSELs in a broadband chaos network driven by a bandwidth-enhanced chaotic signal. Opt. Commun., 285, 1442(2012).

    [10] I. Reidler, Y. Aviad, M. Rosenbluh, I. Kanter. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett., 103, 024102(2009).

    [11] I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh. An optical ultrafast random bit generator. Nat. Photon., 4, 58(2010).

    [12] K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, P. Davis. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express, 18, 5512(2010).

    [13] Y. Wang, Z. Jia, Z. Gao, J. Xiao, L. Wang, Y. Wang, Y. Huang, A. Wang. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback. Opt. Express, 28, 18507(2020).

    [14] R. Sakuraba, K. Iwakawa, K. Kanno, A. Uchida. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express, 23, 1470(2015).

    [15] L. Qiao, T. Lv, Y. Xu, M. Zhang, J. Zhang, T. Wang, R. Zhou, Q. Wang, H. Xu. Generation of flat wideband chaos based on mutual injection of semiconductor lasers. Opt. Lett., 44, 5394(2019).

    [16] B. Pan, D. Lu, L. Zhao. Broadband chaos generation using monolithic dual-mode laser with optical feedback. IEEE Photon. Technol. Lett., 27, 2516(2015).

    [17] Q. Yang, L. Qiao, M. Zhang, J. Zhang, T. Wang, S. Gao, M. Chai, P. M. Mohiuddin. Generation of a broadband chaotic laser by active optical feedback loop combined with a high nonlinear fiber. Opt. Lett., 45, 1750(2020).

    [18] H. Long, Y.-Z. Huang, X.-W. Ma, Y.-D. Yang, J.-L. Xiao, L.-X. Zou, B.-W. Liu. Dual-transverse-mode microsquare lasers with tunable wavelength interval. Opt. Lett., 40, 3548(2015).

    [19] Y.-D. Yang, Y.-Z. Huang. Mode characteristics and directional emission for square microcavity lasers. J. Phys. D, 49, 253001(2016).

    [20] H.-Z. Weng, Y.-Z. Huang, X.-W. Ma, F.-L. Wang, M.-L. Liao, Y.-D. Yang, J.-L. Xiao. Spectral linewidth analysis for square microlasers. IEEE Photon. Technol. Lett., 29, 1931(2017).

    [21] H.-Z. Weng, Y.-D. Yang, J.-L. Wu, Y.-Z. Hao, M. Tang, J.-L. Xiao, Y.-Z. Huang. Dual-mode microcavity semiconductor lasers. IEEE J. Sel. Top. Quantum Electron., 25, 1501408(2019).

    [22] H. Someya, I. Oowada, H. Okumura, T. Kida, A. Uchida. Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection. Opt. Express, 17, 19536(2009).

    [23] R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, P. Davis. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation. Opt. Express, 22, 11727(2014).

    [24] B. Tromborg, H. Olesen, X. Pan, S. Saito. Transmission line description of optical feedback and injection locking for Fabry–Perot and DFB lasers. IEEE J. Sel. Top. Quantum Electron., 23, 1875(1987).

    [25] F.-Y. Lin, Y.-K. Chao, T.-C. Wu. Effective bandwidths of broadband chaotic signals. IEEE. J. Quantum Electron., 48, 1010(2012).

    [26] P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, Y. Wang. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 27, 17859(2019).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Chunguang Ma, Jiliang Wu, Jinlong Xiao, Yongtao Huang, Yali Li, Yuede Yang, Yongzhen Huang, "Wideband chaos generation based on a dual-mode microsquare laser with optical feedback," Chin. Opt. Lett. 19, 111401 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers, Optical Amplifiers, and Laser Optics

    Received: Feb. 18, 2021

    Accepted: Apr. 7, 2021

    Posted: Apr. 7, 2021

    Published Online: Aug. 18, 2021

    The Author Email: Yuede Yang (yyd@semi.ac.cn)

    DOI:10.3788/COL202119.111401

    Topics