Journal of Quantum Optics, Volume. 30, Issue 1, 11001(2024)
Frequency Stabilization System of Semiconductor Laser Based on FPGA
[1] [1] WANG D, LI X Q. New progress in semiconductor lasers and their applications[J]. Opt Precis Eng, 2001, 9(3):279-283. (in Chinese). DOI: 10.3321/j.issn:1004-924X.2001.03.018.
[2] [2] SLUSHER R E, HOLLBERG L W, YURKE B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity[J]. Phys Rev Lett, 1985, 55(22):2409. DOI: 10.1103/PhysRevLett.55.2409
[3] [3] KASEVICH M, CHU S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer[J]. Appl Phys B, 1992, 54:321-332. DOI: 10.1007/BF00325375.
[4] [4] ISENHOWER L, URBAN E, ZHANG X L, et al. Demonstration of a neutral atom controlled-NOT quantum gate[J]. Phys Rev Lett, 2010, 104(1):010503. DOI: 10.1103/PhysRevLett.104.010503.
[5] [5] REISERER A, KALB N, REMPE G, et al. A quantum gate between a flying optical photon and a single trapped atom[J]. Nature, 2014, 508(7495):237-240. DOI: 10.1038/nature13177.
[6] [6] LVOVSKY A I, SANDERS B C, TITTEL W. Optical quantum memory[J]. Nat Photonics, 2009, 3(12):706-714. DOI: 10.1038/nphoton.2009.231.
[7] [7] KASEVICH M, CHU S. Laser cooling below a photon recoil with three-level atoms[J]. Phys Rev Lett, 1992, 69(12):1741.DOI: 10.1103/PhysRevLett.69.1741.
[8] [8] MARANGOS J P. Electromagnetically induced transparency[J]. J Mod Optic, 1998, 45(3): 471-503. DOI: 10.1080/09500349808231909.
[9] [9] HINKLEY N, SHERMAN J A, PHILLIPS N B, et al. An atomic clock with 10-18 instability[J]. Science, 2013, 341(6151): 1215-1218. DOI: 10.1126/science.1240420.
[10] [10] YE J, VERNOOY D W, KIMBLE H J. Trapping of single atoms in cavity QED[J]. Phys Rev Lett, 1999, 83(24):4987. DOI: 10.1103/PhysRevLett.83.4987.
[11] [11] YANG P, XIA X, HE H, et al. Realization of nonlinear optical on few-photon level based on atoms strongly coupled to an asymmetric cavity[J]. Phys Rev Lett, 2019, 123(23):233604. DOI: 10.1103/PhysRevLett.123.233604.
[12] [12] CHENG F, ZHANG P F, WANG X, et al. Experimental investigation on the coupling process between microtoroidal resonators and tapered nanofibers[J]. Journal of Quantum Optics, 2017, 23(1):74-81. (in Chinese). DOI: 10.3788/JQO20172301.0010.
[13] [13] WANG X, SONG L, WANG C, et al. Optimization of a magneto-optic trap using nanofibers[J]. Chin Phys B, 2019, 28(7): 073701. DOI: 10.1088/1674-1056/28/7/073701.
[14] [14] SONG L J, ZHANG P F, WANG X, et al. Characteristics and control of fiber ring resonator[J]. Acta Phys Sin, 2019, 68(7): 074204. (in Chinese). DOI: 10.7498/aps.68.20182296.
[15] [15] XIE J P, WANG P, XU L X, et al. Wavelength luning and stabilizing techniques of semiconductor lasers[J]. Chin J Quantum Electron, 2002, 19(2):97-103. (in Chinese). DOI: 10.3969/j.issn.1007-5461.2002.02.001.
[16] [16] HAN S L, WU X, LIN Q. Frequency stabilization technologies of semiconductor laser[J]. Infrared Laser Eng, 2013, 42(5): 1189-1193. (in Chinese). DOI: 10.3969/j.issn.1007-2276.2013.05.015.
[17] [17] GONG H, WANG Y, BAI J H, et al. Review of semiconductor laser frequency stabilization[J], Metrology & Meas Technol, 2019, 39(3):1-7. (in Chinese). DOI: 10.11823/j.issn.1674-5795.2019.03.01.
[18] [18] CHEN Y X, XUE D J, CHENG B T, et al. Development of the stabilization of laser diode[J]. Laser Infrared, 2005, 35(1): 18-21. (in Chinese). DOI: 10.3969/j.issn.1001-5078.2005.01.006.
[19] [19] WIEMAN C E, HOLLBERG L, HOLLBERG L. Using diode lasers for atomic physics[J]. Rev Sci Instrum, 1991, 62(1):1-20. DOI: 10.1063/1.1142305
[20] [20] ZHANG J, TAO H, WEI D, et al. A laser diode system stabilized on the saturated absorption lines of rubidium atoms[J]. Acta Opt Sin, 2003, 23(2):197-201. (in Chinese). DOI: 10.3321/j.issn:0253-2239.2003.02.014.
[21] [21] JIANG X, ZHANG C, CAI W Q, et al. Frequency stabilization system of diode laser for cold atom experiment[J]. Chin J Lasers, 2010, 37(1):82-86. (in Chinese). DOI: 10.3788/CJL20103701.0082.
[22] [22] MENG T F, WU Y L, JI Z H, et al. Frequency stabilized diode laser based on cesium molecular saturated absorption spectroscopy[J]. Chin J Lasers, 2010, 37(5):1182-1185. (in Chinese). DOI: 10.1007/bf00332316.
[23] [23] MONMASSON E, IDKHAJINE L, CIRSTEA M N, et al. FPGAs in industrial control applications[J]. IEEE T Ind Inform, 2011, 7(2):224-243. DOI: 10.1109/TII.2011.2123908.
[24] [24] NAOUAR M W, MONMASSON E, NAASSANI A A, et al. FPGA-based current controllers for AC machine drives - A review[J]. IEEE T Ind Electron, 2007, 54(4):1907-1925. DOI: 10.1109/TIE.2007.898302.
[25] [25] ZHANG C, LI P, SUN G, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C]// Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey California, USA, 22-24 February 2015. ACM, 2015. DOI: 10.1145/2684746.2689060.
[26] [26] SUDA N, CHANDRA V, DASIKA G, et al. Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks[C]// The 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey California, USA, 21-23 February 2016. ACM, 2016. DOI: 10.1145/2847263.2847276.
[27] [27] ASANO S, MARUYAMA T, YAMAGUCHI Y. Performance comparison of FPGA, GPU and CPU in image processing[C]//2009 International Conference on Field Programmable Logic and Applications, Prague, Czech Republic, 31 August 2009-02 September 2009. IEEE, 2019. DOI: 10.1109/FPL.2009.5272532.
[28] [28] TLELO-CUAUTLE E, RANGEL-MAGDALENO J J, PANO-AZUCENA A D, et al. FPGA realization of multi-scroll chaotic oscillators[J]. Commun Nonlinear Sci Numer Simul, 2015, 27(1-3):66-80. DOI: 10.1016/j.cnsns.2015.03.003.
[29] [29] GERBERDING O, DIEKMANN C, KULLMANN J, et al. Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of high-frequency signals with microradian precision[J]. Rev Sci Instrum, 2015, 86(7):074501. DOI: 10.1063/1.4927071.
[30] [30] MUGUNDHAN V, SWAR M, BHAR S, et al. A real-time digital receiver for correlation measurements in atomic systems[J]. IEEE T Instrum Meas, 2021, 70:1-8. DOI: 10.1109/TIM.2020.3026843.
[31] [31] DEJDAR P, MUNSTER P, HORVATH T. High-speed data acquisition and signal processing using cost effective ARM+ FPGA processors[C]// 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 01-03 July 2019. IEEE, 2019. DOI: 10.1109/TSP.2019.8769055.
[32] [32] XU Z X, HUANG K K, LU X H. A digital optical phase-locked loop based on field programmable gate array and its applications[C]// 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan, 26-28 April 2014. IEEE, 2014. DOI: 10.1109/InfoSEEE.2014.6947776.
[33] [33] RYOU A, SIMON J. Active cancellation of acoustical resonances with an FPGA FIR filter[J]. Rev Sci Instrum, 2017, 88(1): 013101. DOI: 10.1063/1.4973470.
[34] [34] OKADA M, SERIKAWA T, DANNATT J, et al. Extending the piezoelectric transducer bandwidth of an optical interferometer by suppressing resonance using a high dimensional IIR filter implemented on an FPGA[J]. Rev Sci Instrum, 2020, 91(5):055102. DOI: 10.1063/1.5143477.
[35] [35] CALOSSO C E, BERTACCO E K, CALONICO D, et al. Tracking DDS for coherent optical links[C]// 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 21-25 July 2013. IEEE 2014. DOI: 10.1109/EFTF-IFC.2013.6702284.
[36] [36] CALOSSO C E, BERTACCO E K, CALONICO D, et al. Doppler-stabilized fiber link with 6 dB noise improvement below the classical limit[J]. Opt Lett, 2015, 40(2):131-134. DOI: 10.1364/ol.40.000131.
[37] [37] OLAYA A C C, MICALIZIO S, ORTOLANO M, et al. Digital electronics based on red pitaya platform for coherent fiber links[C]// 2016 European Frequency and Time Forum (EFTF), York, UK, 04-07 April 2016. IEEE, 2016. DOI: 10.1109/EFTF.2016.7477826.
[38] [38] RESTELLI A, ABBIATI R, GERACI A. Digital field programmable gate array-based lock-in amplifier for highperformance photon counting applications[J]. Rev Sci Instrum, 2005, 76(9):093112. DOI: 10.1063/1.2008991.
[39] [39] VANDENBUSSCHE J J, LEE P, PEUTEMAN J. On the accuracy of digital phase sensitive detectors implemented in FPGA technology[J]. IEEE T Instrum Meas, 2014, 63(8):1926-1936. DOI: 10.1109/TIM.2014.2303257.
[40] [40] MACIAS-BOBADILLA G, RODRíGUEZ-RESéNDIZ J, MOTA-VALTIERRA G, et al. Dual-phase lock-in amplifier based on FPGA for low-frequencies experiments[J]. Sensors, 2016, 16(3):379. DOI: 10.3390/s16030379.
[41] [41] ARNALDI L H. Implementation of an AXI-compliant lock-in amplifier on the RedPitaya open source instrument[C]//2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE), Buenos Aires, Argentina, 09-11 August 2017. IEEE, 2017. DOI: 10.23919/SASE-CASE.2017.8115374.
[42] [42] HANNIG S, MIELKE J, FENSKE J A, et al. A highly stable monolithic enhancement cavity for second harmonic generation in the ultraviolet[J]. Rev Sci Instrum, 2018, 89(1):013106. DOI: 10.1063/1.5005515.
[43] [43] LUDA M A, DRECHSLER M, SCHMIEGELOW C T, et al. Compact embedded device for lock-in measurements and experiment active control[J]. Rev Sci Instrum, 2019, 90(2):023106. DOI: 10.1063/1.5080345.
[44] [44] MARECHAL B, HUGEAT A, GOAVEC-MéROU G, et al. Digital implementation of various locking schemes of ultrastable photonics systems[C]// 2018 IEEE International Frequency Control Symposium (IFCS), Olympic Valley, CA, USA, 21-24 May 2018. IEEE, 2019. DOI: 10.23919/SASE-CASE.2017.8115374.
[45] [45] LAM T T Y, SLAGMOLEN B J J, CHOW J H, et al. Digital laser frequency stabilization using an optical cavity[J]. IEEE J Quantum Elect, 2010, 46(8):1178-1183. DOI: 10.1109/JQE.2010.2044867.
[46] [46] PREUSCHOFF T, SCHLOSSER M, BIRKL G. Digital laser frequency and intensity stabilization based on the STEMlab platform (originally Red Pitaya)[J]. Rev Sci Instrum, 2020, 91(8):083001. DOI: 10.1063/5.0009524.
[47] [47] ROY A, SHARMA L, CHAKRABORTY I, et al. An FPGA based all-in-one function generator, lock-in amplifier and autorelockable PID system[J]. J Instrum, 2019, 14(5):P05012. DOI: 10.1088/1748-0221/14/05/P05012.
[48] [48] WIEGAND B, LEYKAUF B, JORDENS R, et al. Linien: A versatile, user-friendly, open-source FPGA-based tool for frequency stabilization and spectroscopy parameter optimization[J]. Rev Sci Instrum, 2022, 93(6): 063001. DOI: 10.1063/5.0090384.
[49] [49] RED PITAYA. STEMlab 125-14 Starter Kit[EB/OL].[2021-11-10]. https://redpitaya.com/stemlab-125-14/.
[50] [50] NEUHAUS L, METZDORFF R, CHUA S, et al. PyRPL (Python Red Pitaya Lockbox) - an open-source software package for FPGA-controlled quantum optics experiments[C]// 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Munich, Germany, 25-29 June 2017. IEEE, 2017. DOI: 10.1109/CLEOE-EQEC.2017.8087380.
[51] [51] YANG D H, WANG Y Q. Study on the saturation absorption of cesium[J]. Opt Commun, 1989, 74(1-2):54-58. DOI: 10.1016/0030-4018(89)90489-6.
[52] [52] HAWTHORN C J, WEBER K P, SCHOLTEN R E. Littrow configuration tunable external cavity diode laser with fixed direction output beam[J]. Rev Sci Instrum, 2001, 72(12):4477-4479. DOI: 10.1063/1.1419217.
Get Citation
Copy Citation Text
ZHANG Pei, WANG Chen-xi, SONG Li-jun, HU Yu-dong, LI Gang, ZHANG Peng-fei, ZHANG Tian-cai. Frequency Stabilization System of Semiconductor Laser Based on FPGA[J]. Journal of Quantum Optics, 2024, 30(1): 11001
Received: Nov. 18, 2022
Accepted: --
Published Online: Aug. 23, 2024
The Author Email: ZHANG Peng-fei (zhangpengfei@sxu.edu.cn)