OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 20, Issue 4, 123(2022)
Review of Beam Shifts Research
[1] [1] GOOS F, H NCHEN H. Ein neuer und fundamentaler Versuch zur Totalreflexion[J]. Annalen der Physik, 1947, 436(7-8): 333-46.
[2] [2] Fedorov F I. K teorii polnovo otrazenija[J]. Dok Akad Nauk SSSR, 1955, 105: 465-7.
[3] [3] Imbert C. Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam [J]. Physical Review D, 1972, 5(4): 787-96.
[4] [4] Tamir T. Nonspecular phenomena in beam fields reflected by multilayered media[J]. Journal of The Optical Society of America A-Optics Image Science and Vision, 1986, 3: 558-65.
[5] [5] Aiello A, Woerdman J P. Theory of angular Goos-H nchen shift near Brewster incidence[J]. arXiv: Optics, 2009.
[6] [6] Benam E R, Sahrai M, Bonab J P. High sensitive label-free optical sensor based on Goos-H nchen effect by the single chirped laser pulse[J]. Sci. Rep., 2020, 10(1): 17176.
[7] [7] Sakata T, Togo H, Shimokawa F. Reflection-type 2×2 optical waveguide switch using the Goos-H nchen shift effect[J]. Applied Physics Letters, 2000, 76(20): 2841-2843.
[8] [8] ZHOU X, CHENG W, LIU S, et al. Tunable and high-sensitivity temperature-sensing method based on weak-value amplification of Goos-H nchen shifts in a graphene-coated system[J]. Optics Communications, 2021, 483: 126655.
[9] [9] WANG X, YIN C, SUN J, et al. High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-H nchen effect[J]. Optics Express, 2013, 21(11): 13380-5.
[10] [10] GUO Y, SINGH N M, MANAS DAS C, et al. Plasmonic-based sensitivity enhancement of a Goos–H nchen shift biosensor using transition metal dichalcogenides: a theoretical insight[J]. New Journal of Chemistry, 2020, 44(37): 16144-16151.
[11] [11] CHEN S, MI C, LIANG C, et al. Observation of the Goos-H nchen shift in graphene via weak measurements[J]. Applied Physics Letters, 2017, 110(3): 031105.1-. 5.
[12] [12] WU W, ZHANG W, CHEN S, et al. Transitional Goos-H nchen effect due to the topological phase transitions[J]. Opt. Express, 2018, 26(18): 23705-23713.
[13] [13] WANG B, RONG K, MAGUID E, et al. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect[J]. Nat. Nanotechnol, 2020, 15(6): 450-6.
[14] [14] JIN R, TANG L, LI J, et al. Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin Hall effect[J]. ACS Photonics, 2020, 7(2): 512-8.
[15] [15] WANG R, ZHOU J, ZENG K, et al. Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect[J]. APL Photonics, 2020, 5(1): 016105.
[16] [16] Artmann K. Berechnung der Seitenversetzung des totalreflektierten Strahles[J]. Annalen der Physik, 1948, 437: 87-102.
[17] [17] Renard R H. Total reflection: A new evaluation of the Goos-H nchen shift[J]. J. Opt. Soc. Am, 1964, 54(10): 1190-1197.
[18] [18] GAO M, DENG D. Spatial Goos-H nchen and Imbert-Fedorov shifts of rotational 2-D finite energy Airy beams[J]. Opt. Express, 2020, 28(7): 10531-10541.
[19] [19] Yasumoto K, ōIshi Y. A new evaluation of the Goos-H nchen shift and associated time delay[J]. Journal of Applied Physics, 1983, 54(5): 2170-2176.
[20] [20] Onoda M, Murakami S, Nagaosa N. Hall effect of light[J]. Physical Review Letters, 2004, 93(8): 083901.
[21] [21] LING X, ZHOU X, HUANG K, et al. Recent advances in the spin Hall effect of light [J]. Rep. Prog. Phys., 2017, 80(6): 066401.
[22] [22] Schilling H. Die Strahlversetzung bei der Reflexion linear oder elliptisch polarisierter ebener wellen an der trennebene zwischen absorbierenden medien[J]. Annalen der Physik, 1965, 471(3‐4): 122-34.
[23] [23] Liberman V S, Zel'dovich B Y. Spin-orbit interaction of a photon in an inhomogeneous medium[J]. Phys. Rev. A, 1992, 46(8): 5199-207.
[24] [24] Bliokh K Y, Bliokh Y P. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet[J]. Phys. Rev. Lett., 2006, 96(7): 073903.
[25] [25] LI C-F. Unified theory for Goos-H nchen and imbert-fedorov effects[J]. Physical Review A, 2007, 76: 013811.
[26] [26] Aiello A, Woerdman J P. Role of beam propagation in Goos-H nchen and Imbert-Fedorov shifts[J]. Optics letters, 2008, 33(13): 1437-1439.
[27] [27] Merano M, Aiello A, Van Exter M P, et al. Observing angular deviations in the specular reflection of a light beam[J]. Nature Photonics, 2009, 3(6): 337-40.
[28] [28] Merano M, Hermosa N, Aiello A, et al. Demonstration of a quasi-scalar angular Goos-H nchen effect [J]. Optics letters, 2010, 35(21): 3562-4.
[29] [29] Merano M, Aiello A, Gw T H, et al. Observation of Goos-H nchen shifts in metallic reflection[J]. Optics Express, 2007, 15(24): 15928-34.
[30] [30] Wolter H. Untersuchungen zur strahlversetzung bei totalreflexion des lichtes mit der methode der minimumstrahlkennzeichnung[J]. Zeitschrift Für Naturforschung A, 1950, 5(3): 143-53.
[31] [31] Tamir T, Bertoni H L. Lateral displacement of optical beams at multilayered and periodic structures[J]. J. Opt. Soc. Am, 1971, 61(10): 1397-413.
[32] [32] Wild W J, Giles C L. Goos-H nchen shifts from absorbing media[J]. Physical Review A, 1982, 25(4): 2099-2101.
[33] [33] LAI H M, CHAN S W. Large and negative Goos-H nchen shift near the Brewster dip on reflection from weakly absorbing media[J]. Optics Letters, 2002, 27(9): 680-2.
[34] [34] Shadrivov I V, Zharov A A, Kivshar Y S. Giant Goos-H nchen effect at the reflection from left-handed metamaterials[J]. Applied Physics Letters, 2003, 83(13): 2713-2715.
[35] [35] QING D K, GANG C. Goos-H nchen shifts at the interfaces between left- and right-handed media[J]. Optics Letters, 2004, 29(8): 872-874.
[36] [36] WANG L G, CHEN H, ZHU S Y. Large negative Goos-H nchen shift from a weakly absorbing dielectric slab[J]. Optics Letters, 2005, 30(21): 2936-2938.
[37] [37] HE J, JIN Y, HE S. Giant negative Goos-H nchen shifts for a photonic crystal with a negative effective index[J]. Optics Express, 2006, 14(7): 3024-3029.
[38] [38] Berman P R. Goos-H nchen shift in negatively refractive media[J]. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2002, 66(6): 067603.
[39] [39] Lakhtakia A. Positive and negative goos-h nchen shifts and negative phase-velocity mediums (alias left-handed materials)[J]. AEU-International Journal of Electronics and Communications, 2004, 58(3): 229-231.
[40] [40] HU X, HUANG Y, WEI Z, et al. Opposite Goos-H nchen shifts for transverse-electric and transverse-magnetic beams at the interface associated with single-negative materials[J]. Optics Letters, 2005, 30(8): 899-901.
[41] [41] LI C F. Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects [J]. Phys. Rev. Lett., 2003, 91(13): 133903.
[42] [42] MA H, JU C, XI X, et al. Nonreciprocal Goos-H nchen shift by topological edge states of a magnetic photonic crystal[J]. Opt. Express, 2020, 28(14): 19916-19925.
[43] [43] YU B, TANG T, WANG R, et al. Magneto-optical and thermo-optical modulations of Goos-Hnchen effect in one-dimensional photonic crystal with graphene-VO2[J]. Journal of Magnetism and Magnetic Materials, 2021, 530(9): 167946.
[44] [44] LI X, WANG P, XING F, et al. Experimental observation of a giant Goos-H nchen shift in graphene using a beam splitter scanning method[J]. Opt. Lett., 2014, 39(19): 5574-5577.
[45] [45] Grosche S, Ornigotti M, Szameit A. Goos-H nchen and imbert-fedorov shifts for Gaussian beams impinging on graphene-coated surfaces[J]. Opt. Express, 2015, 23(23): 30195-30203.
[46] [46] ZHOU X, LIU S, DING Y, et al. Precise control of positive and negative Goos-H nchen shifts in graphene [J]. Carbon, 2019, 149: 604-608.
[47] [47] ZHEN W, DENG D. Goos-H nchen shifts for Airy beams impinging on graphene-substrate surfaces[J]. Opt. Express, 2020, 28(16): 24104-14.
[48] [48] ZHEN W, DENG D. Goos-H nchen shift for elegant Hermite-Gauss light beams impinging on dielectric surfaces coated with a monolayer of graphene[J]. Applied Physics B, 2020, 126(3): 35.
[49] [49] DU X, DA H. Large and controlled Goos-H nchen shift in monolayer graphene covered multilayer photonic crystals grating[J]. Optics Communications, 2021, 483: 126606.
[50] [50] SONG H Y, FU S F, ZHANG Q, et al. Large spatial shifts of reflective beam at the surface of graphene/hBN metamaterials[J]. Opt. Express, 2021, 29(12): 19068-83.
[51] [51] ZHAO D, KE S, LIU Q, et al. Giant Goos-H nchen shifts in non-Hermitian dielectric multilayers incorporated with graphene [J]. Opt. Express, 2018, 26(3): 2817-2828.
[52] [52] Ziauddin, Ahmad W, Chaung Y-L, et al. Influence of the degree of spatial coherence on the Goos–H nchen shifts for a three-dimensional Dirac semimetal[J]. Physica B: Condensed Matter, 2020, 599: 412469.
[53] [53] KOTOV O V, LOZOVIK Y E. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films[J]. Physrevb, 2016, 93(23): 235417.
[54] [54] YE G, ZHANG W, WU W, et al. Goos-H nchen and Imbert-Fedorov effects in Weyl semimetals[J]. Physical Review A, 2019, 99(2): 023807.
[55] [55] ZHENG R-F, ZHOU L, ZHANG W. A beam splitter for Dirac-Weyl fermions through the Goos-H nchen-like shift [J]. Physics Letters A, 2017, 381(45): 3798-804.
[56] [56] WANG J, ZHAO M, LIU W, et al. Shifting beams at normal incidence via controlling momentum-space geometric phases[J]. Nat. Commun., 2021, 12(1): 6046.
[57] [57] Ziauddin, Chuang Y L, Qamar S, et al. Goos-H nchen shift of partially coherent light fields in epsilon-near-zero metamaterials[J]. Sci. Rep., 2016, 6: 26504.
[58] [58] CAO Y, FU Y, ZHOU Q, et al. Giant Goos-H nchen shift induced by bounded states in optical PT-symmetric bilayer structures [J]. Opt. Express, 2019, 27(6): 7857-7867.
[59] [59] YUE Q, ZHEN W, DING Y, et al. Giant Goos-H nchen shifts controlled by exceptional points in a PT-symmetric periodic multilayered structure coated with graphene[J]. Optical Materials Express, 2021, 11(12): 3954-3965.
[60] [60] KIM D, OH Y W, KIM J U, et al. Extreme anti-reflection enhanced magneto-optic Kerr effect microscopy [J]. Nat. Commun., 2020, 11(1): 5937.
[61] [61] Merano M, G tte J, Aiello A, et al. Goos-H nchen shift for a rough metallic mirror [J]. Optics Express, 2009, 17(13): 10864-10870.
[62] [62] WAN R G, Zubairy M S. Tunable and enhanced Goos-H nchen shift via surface plasmon resonance assisted by a coherent medium[J]. Opt. Express, 2020, 28(5): 6036-6047.
[63] [63] Khani S, Danaie M, Rezaei P. Fano resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications[J]. Plasmonics, 2021, 16: 1891-1908.
[64] [64] YI W, CA O Z, LI H, et al. Electric control of spatial beam position based on the Goos-H nchen effect[J]. Applied Physics Letters, 2008, 93(9): 333.
[65] [65] CHEN X, SHEN M, ZHANG Z F, et al. Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals[J]. Journal of Applied Physics, 2008, 104(12): 333.
[66] [66] CHENG M, FU P, CHEN X, et al. Giant and tunable Goos-H nchen shifts for attenuated total reflection structure containing graphene[J]. Journal of the Optical Society of America B, 2014, 31(10): 2325-2329.
[67] [67] Petrov N I, Danilov V A, Popov V V, et al. Large positive and negative Goos-H nchen shifts near the surface plasmon resonance in subwavelength grating[J]. Opt. Express, 2020, 28(5): 7552-7564.
[68] [68] DING Y, DENG D, ZHOU X, et al. Barcode encryption based on negative and positive Goos-H nchen shifts in a graphene-ITO/TiO2/ITO sandwich structure[J]. Optics Express, 2021, 29(25): 41164-75.
[69] [69] ZHEN W, DENG D, GUO J. Goos-Hnchen shifts of Gaussian beams reflected from surfaces coated with cross-anisotropic metasurfaces[J]. Optics & Laser Technology, 2021, 135: 106679.
[70] [70] LU Z, ZHEN W, WANG G, et al. Goos-H nchen and Imbert-Fedorov shifts of reflected rotating elliptical Gaussian beams from surfaces coated with cross-anisotropic metasurfaces[J]. Results in Physics, 2021, 27: 104548.
[71] [71] LIU Q, ZHEN W, GAO M, et al. Goos-H nchen and Imbert-Fedorov shifts for the rotating elliptical Gaussian beams[J]. Results in Physics, 2020, 18: 103297.
[72] [72] WANG L-G, ZHU S-Y, ZUBAIRY M S. Goos-H nchen shifts of partially coherent light fields [J]. Physical review letters, 2013, 111(22): 223901.
[73] [73] Ziauddin, Chuang Y-L, LEE R-K. Negative and positive Goos-H nchen shifts of partially coherent light fields[J]. Physical Review A, 2015, 91(1): 013803.
[74] [74] LIN Y, LIU X, CHEN H, et al. Tunable asymmetric spin splitting by black phosphorus sandwiched epsilon-near-zero-metamaterial in the terahertz region [J]. Opt. Express, 2019, 27(11): 15868-15879.
[75] [75] Kato Y K, Myers R C, Gossard A C, et al. Observation of the spin Hall effect in semiconductors [J]. Science, 2004, 306(5703): 1910-1913.
[76] [76] Hosten O, Kwiat P. Observation of the spin hall effect of light via weak measurements [J]. Science, 2008, 319(5864): 787-790.
[77] [77] LUO H, ZHOU X, SHU W, et al. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection[J]. Physical Review A, 2011, 84(4): 1452-1457.
[78] [78] ZHOU X, XIAO Z, LUO H, et al. Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements[J]. Physical Review A, 2011, 85(4): 043809.
[79] [79] REN J L, WANG B, XIAO Y F, et al. Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface[J]. Applied Physics Letters, 2015, 107(11): 083901.
[80] [80] FU S, GUO C, LIU G, et al. Spin-orbit optical hall effect [J]. Phys. Rev. Lett., 2019, 123(24): 243904.
[81] [81] Neugebauer M, Nechayev S, Vorndran M, et al. Weak measurement enhanced spin hall effect of light for particle displacement sensing [J]. Nano. Lett., 2019, 19(1): 422-425.
[82] [82] DAI H, YUAN L, YIN C, et al. Direct visualizing the spin hall effect of light via ultrahigh-order modes[J]. Phys. Rev. Lett., 2020, 124(5): 053902.
[83] [83] WU Y, SHENG L, XIE L, et al. Actively manipulating asymmetric photonic spin Hall effect with graphene [J]. Carbon, 2020, 166: 396-404.
[84] [84] ZHU W, ZHENG H, ZHONG Y, et al. Wave-vector-varying Pancharatnam-Berry phase photonic spin hall effect [J]. Phys. Rev. Lett., 2021, 126(8): 083901.
[85] [85] Menard J M, Mattacchione A E, Driel H M V, et al. Ultrafast optical imaging of the spin Hall effect of light in semiconductors[J]. Physical Review B, 2010, 82(4): 2818-2823.
[86] [86] Ménard J, Mattacchione A E, Betz M, et al. Imaging the spin Hall effect of light inside semiconductors via absorption [J]. Optics Letters, 2009, 34(15): 2312-4.
[87] [87] LUO H, WEN S, SHU W, et al. Spin Hall effect of light in photon tunneling[J]. Physical Review A, 2010, 82(4): 178-81.
[88] [88] LUO H, LING X, ZHOU X, et al. Enhancing or suppressing spin Hall effect of light in layered nanostructures[J]. Physical Review A, 2011, 84(3): 95-105.
[89] [89] LUO W, XIAO S, HE Q, et al. Photonic spin hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 2015, 3(8): 1102-1108.
[90] [90] FU Y-Y, FEI Y, DONG D-X, et al. Photonic spin Hall effect in PT symmetric metamaterials[J]. Frontiers of Physics, 2019, 14(6): 62601.
[91] [91] WANG X G, ZHANG Y Q, FU S F, et al. Goos-H nchen and Imbert-Fedorov shifts on hyperbolic crystals[J]. Opt. Express, 2020, 28(17): 25048-25059.
[92] [92] TANG Y, LI K, ZHANG X, et al. Harmonic spin-orbit angular momentum cascade in nonlinear optical crystals [J]. Nature Photonics, 2020, 14(11): 658-662.
[93] [93] Bardon-brun T, Delande D, Cherroret N. Spin Hall Effect of light in a random medium[J]. Phys. Rev. Lett., 2019, 123(4): 043901.
[94] [94] Iqbal M, Waseer W I, Naqvi Q A. Studying the Imbert-Fedorov shift for a non-integer dimensional chiral-chiral planar interface[J]. Physics Letters A, 2021, 409: 127518.
[95] [95] Chattopadhyay U, SHI L K, ZHANG B, et al. Fermi-arc-induced vortex structure in weyl beam shifts[J]. Phys. Rev. Lett., 2019, 122(6): 066602.
[96] [96] Sharma D K, Kumar V, Vasista A B, et al. Spin-Hall effect in the scattering of structured light from plasmonic nanowire [J]. Opt. Lett., 2018, 43(11): 2474-2477.
[97] [97] XU Z, HWEE WONG G D, TANG J, et al. Giant spin Hall effect in Cu-Tb alloy thin films[J]. ACS Appl. Mater Interfaces, 2020, 12(29): 32898-32904.
[98] [98] Bliokh K Y, Shadrivov I V, Kivshar Y S. Goos-H nchen and Imbert-Fedorov shifts of polarized vortex beams [J]. Optics Letters, 2009, 34(3): 389-391.
[99] [99] XIAO Z, LUO H, WEN S. Goos-H nchen and Imbert-Fedorov shifts of vortex beams at air-left-handed-material interfaces[J]. Physical Review A, 2012, 85(5): 1-10.
[100] [100] Ornigotti M. Goos-H nchen and Imbert-Fedorov shifts for Airy beams [J]. Opt. Lett., 2018, 43(6): 1411-1414.
[101] [101] Aiello A, Woerdman J P. Goos-H nchen and Imbert-Fedorov shifts of a nondiffracting Bessel beam[J]. Optics Letters, 2011, 36(4): 543-545.
[102] [102] GAO M, WANG G, YANG X, et al. Goos-H nchen and Imbert-Fedorov shifts of off-axis Airy vortex beams[J]. Opt. Express, 2020, 28(20): 28916-28923.
[103] [103] Prajapati C, Ranganathan D. Goos-H nchen and Imbert-Fedorov shifts for Hermite-Gauss beams[J]. Journal of the Optical Society of America A, 2012, 29(7): 1377-1382.
[104] [104] Pichugin K N, Maksimov D N, Sadreev A F. Goos-H nchen and Imbert-Fedorov shifts of higher-order Laguerre-Gaussian beams reflected from a dielectric slab[J]. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 2018, 35(8): 1324-1329.
[105] [105] FAN G, DENG D. Control of Imbert-Fedorov shifts by the optical properties of rotating elliptical Gaussian vortex beams[J]. Optics Express, 2021, 29(22): 35182-35190.
[106] [106] KIM M, LEE D, CHO H, et al. Spin Hall effect of light with near-unity efficiency in the microwave[J]. Laser & Photonics Reviews, 2021, 15(2): 2000393.
[107] [107] YANG H, XU J, XIONG Z, et al. Optically reconfigurable spin-valley Hall effect of light in coupled nonlinear ring resonator lattice[J]. Phys. Rev. Lett., 2021, 127(4): 043904.
[108] [108] CHI C, JIANG Q, LIU Z, et al. Selectively steering photon spin angular momentum via electron-induced optical spin Hall effect [J]. Science Advances, 2021, 7(18): eabf8011.
[109] [109] Bahari B, Hsu L, Pan S H, et al. Photonic quantum Hall effect and multiplexed light sources of large orbital angular momenta [J]. Nature Physics, 2021, 17(6): 700-703.
[110] [110] XIE B, SU G, WANG H F, et al. Higher-order quantum spin Hall effect in a photonic crystal[J]. Nat. Commun., 2020, 11(1): 3768.
[111] [111] Safeer C K, Ingla-aynes J, Herling F, et al. Room-temperature spin hall effect in graphene/MoS2 van der Waals heterostructures[J]. Nano Lett., 2019, 19(2): 1074-1082.
[112] [112] Whittaker C E, Dowling T, Nalitov A V, et al. Optical analogue of Dresselhaus spin-orbit interaction in photonic graphene [J]. Nature Photonics, 2020, 15(3): 193-196.
[113] [113] FANG Y, HAN M, GE P, et al. Photoelectronic mapping of the spin-orbit interaction of intense light fields [J]. Nature Photonics, 2020, 15(2): 115-120.
[114] [114] Goswami S, Pal M, Nandi A, et al. Simultaneous weak value amplification of angular Goos-H nchen and Imbert-Fedorov shifts in partial reflection [J]. Opt. Lett., 2014, 39(21): 6229-6232.
[115] [115] G tte J B, Shinohara S, Hentschel M. Are Fresnel filtering and the angular Goos-H nchen shift the same?[J]. Journal of Optics, 2013, 15(1): 014009.
[116] [116] Yallapragada V J, Ravishankar A P, Mulay G L, et al. Observation of giant Goos-H nchen and angular shifts at designed metasurfaces [J]. Sci. Rep., 2016, 6: 19319.
[117] [117] Olaya C M, Hayazawa N, Hermosa N, et al. Angular Goos-H nchen shift sensor using a gold film enhanced by surface plasmon resonance[J]. J. Phys. Chem. A, 2021, 125(1): 451-458.
[118] [118] LIN H, ZHU W, YU J, et al. Upper-limited angular Goos-H nchen shifts of Laguerre-Gaussian beams[J]. Opt Express, 2018, 26(5): 5810-5818.
[119] [119] Stigloher J, Taniguchi T, Korner H S, et al. Observation of a Goos-H nchen-like phase shift for magnetostatic spin waves[J]. Phys. Rev. Lett., 2018, 121(13): 137201.
[120] [120] LI C F, ZHU Q B, NIMTZ G, et al. Experimental observation of negative lateral displacements of microwave beams transmitting through dielectric slabs[J]. Optics Communications, 2006, 259(2): 470-473.
[121] [121] Dasgupta R, Gupta P K. Experimental observation of spin-independent transverse shift of the centre of gravity of a reflected Laguerre-Gaussian light beam[J]. Optics Communications, 2006, 257(1): 91-96.
Get Citation
Copy Citation Text
LIN Yu-pei, LI Bo-yao, SUN Jing-hua, DENG Dong-mei, ZHEN Wei-ming, WANG Xing-jie, GUO Zhong-yi. Review of Beam Shifts Research[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(4): 123
Category:
Received: Dec. 24, 2021
Accepted: --
Published Online: Oct. 29, 2022
The Author Email:
CSTR:32186.14.