Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0412005(2025)

Defect Detection Method for Vehicle Weld Porosity Based on Improved YOLOv5

Xiaolong Zhou* and Changjie Liu
Author Affiliations
  • National Key Laboratory of Precision Test Techniques and Instrument, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(12)
    Structure of the improved model
    Structure of CBAM module
    Structure of channel attention module
    Structure of spatial attention module
    Structure of BiFPN module
    Sschematic diagram of WIoU parameters
    Detection results of vehicle weld defects by proposed model
    Image with poor detection effect by proposed model
    • Table 1. Configuration of experimental environment

      View table

      Table 1. Configuration of experimental environment

      Experimental environmentConfiguration
      Operating systemLinux Ubuntu 22.04
      Central processing unit (CPU)Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10 GHz
      Graphics processing unit (GPU)NVIDIA GeForce RTX 4090 (24 GB)
      Deep learning frameworkPyTorch 2.1.1
      Computing platformCUDA 11.8
      InterpreterPython 3.10.13
    • Table 2. Parameters for model training

      View table

      Table 2. Parameters for model training

      ParameterValue
      Epoch350
      Batch size64
      Minimum learning rate0.00001
      Maximum learning rate0.01
      Resolution /(pixel×pixel×pixel)640×640×3
      Patience50
    • Table 3. Results of comparison experiments by different detection methods

      View table

      Table 3. Results of comparison experiments by different detection methods

      MethodmAP0.5 /%FPS /(frame·s-1Parameters
      SSD71.948.8223745908
      YOLOv5s59.7100.487053910
      YOLOv5m62.377.5220871318
      YOLOv8s49.0108.703011043
      Proposed method62.989.727291390
    • Table 4. Results of ablation experiments on WELD-DET dataset

      View table

      Table 4. Results of ablation experiments on WELD-DET dataset

      MethodmAP0.5 /%FPS /(frames·s-1
      Yolov5s59.7100.48
      Yolov5s+CBAM61.395.82
      Yolov5s+BiFPN61.494.05
      Yolov5s+ WIoU60.698.04
      Yolov5s+BiFPN+CBAM61.891.95
      Yolov5s+ BiFPN+CBAM+WIoU62.989.72
    Tools

    Get Citation

    Copy Citation Text

    Xiaolong Zhou, Changjie Liu. Defect Detection Method for Vehicle Weld Porosity Based on Improved YOLOv5[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0412005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jun. 4, 2024

    Accepted: Jul. 9, 2024

    Published Online: Feb. 10, 2025

    The Author Email:

    DOI:10.3788/LOP241418

    CSTR:32186.14.LOP241418

    Topics