Chinese Optics, Volume. 15, Issue 5, 912(2022)
Review of ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide
[1] REN B, JIANG ZH T, GUO H, . Experiment of new protype group Ⅲ-nitride UV image converter tube and evaluation of detectable distance of missile approach warning system with it[J]. Acta Armamentarii, 38, 924-931(2017).
[2] GUO L, GUO Y N, YANG J K, et al. 275 nm deep ultraviolet AlGaN-based micro-LED arrays for ultraviolet communication[J]. IEEE Photonics Journal, 14, 8202905(2022).
[3] PARK Y H, SOKOLIK I N, HALL S R. The impact of smoke on the ultraviolet and visible radiative forcing under different fire regimes[J]. Air, Soil and Water Research, 11, 1-10(2018).
[4] FRĄCZ P. System for monitoring partial discharges occurring in overhead power transmission line insulators based on ultraviolet radiation registration[J]. Insight-Non-Destructive Testing and Condition Monitoring, 58, 360-366(2016).
[5] BELZ M, DRESS P, KLEIN K F, et al. Liquid core waveguide with fiber optic coupling for remote pollution monitoring in the deep ultraviolet[J]. Water Science and Technology, 37, 279-284(1998).
[6] AI X Y, LI L P, ZHOU X, et al. A monitoring method for sulfate based on ultraviolet absorption spectroscopy dedicated to SO3 monitoring in coal-fired power plants[J]. Chemical Physics Letters, 780, 138935(2021).
[7] CHEN Y R, ZHOU X Y, ZHANG ZH W, et al. Dual-band solar-blind UV photodetectors based on AlGaN/AlN superlattices[J]. Materials Letters, 291, 129583(2021).
[8] KALININA E V, KUDOYAROV M F, NIKITINA I P, et al. Irradiation with argon ions of Cr/4H-SiC photodetectors[J]. Semiconductors, 56, 184-188(2022).
[9] KUANG D, CHENG J, LI X Y, et al. Dual-ultraviolet wavelength photodetector based on facile method fabrication of ZnO/ZnMgO core/shell nanorod arrays[J]. Journal of Alloys and Compounds, 860, 157917(2021).
[10] WU C, WU F, MA C, et al. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors[J]. Materials Today Physics, 23, 100643(2022).
[11] LIU K W, SAKURAI M, AONO M. ZnO-based ultraviolet photodetectors[J]. Sensors, 10, 8604-8634(2010).
[12] YANG Q, GUO X, WANG W H, et al. Enhancing sensitivity of a single ZnO micro- nanowire photodetector by piezo-phototronic effect[J]. ACS Nano, 4, 6285-6291(2010).
[13] LEE H, JUNG H K, KIM Y E, et al. Facile synthesis of ZnO microrod photodetectors by solid-state reaction[J]. Journal of Alloys and Compounds, 825, 154110(2020).
[14] LEE H, MUN J H, OH I, et al. Enhanced photodetector performance in gold nanoparticle decorated ZnO microrods[J]. Materials Characterization, 171, 110813(2021).
[15] SUN X Y, AZAD F, WANG SH P, et al. Low-cost flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate[J]. Nanoscale Research Letters, 13, 277(2018).
[16] LI H H, LIU M L, ZHAO J J, et al. Controllable heterogeneous nucleation for patterning high-quality vertical and horizontal ZnO microstructures toward photodetectors[J]. Small, 16, 2004136(2020).
[17] KUMAR A G, LI X J, DU Y, et al. UV-photodetector based on heterostructured ZnO/(Ga, Ag)-co-doped ZnO nanorods by cost-effective two-step process[J]. Applied Surface Science, 509, 144770(2020).
[18] YOUNG S J, LIU Y H, SHIBLEE M D N I, et al. Flexible ultraviolet photodetectors based on one-dimensional gallium-doped zinc oxide nanostructures[J]. ACS Applied Electronic Materials, 2, 3522-3529(2020).
[19] CHU Y L, YOUNG S J, JI L W, et al. Fabrication of ultraviolet photodetectors based on fe-doped ZnO nanorod structures[J]. Sensors, 20, 3861(2020).
[20] MAHMOOD N, KHAN H, TRAN K, et al. Maximum piezoelectricity in a few unit-cell thick planar ZnO – A liquid metal-based synthesis approach[J]. Materials Today, 44, 69-77(2021).
[21] KRISHNAMURTHI V, AHMED T, MOHIUDDIN M, et al. A visible-blind photodetector and artificial optoelectronic synapse using liquid-metal exfoliated ZnO nanosheets[J]. Advanced Optical Materials, 9, 2100449(2021).
[22] MA H Y, LIU K W, CHENG ZH, et al. Speed enhancement of ultraviolet photodetector base on ZnO quantum dots by oxygen adsorption on surface defects[J]. Journal of Alloys and Compounds, 868, 159252(2021).
[23] ZHENG ZH Y, LIU K W, CHEN X, et al. High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition[J]. Nanotechnology, 32, 475201(2021).
[24] YANG F, ZHENG M L, ZHAO L, et al. The high-speed ultraviolet photodetector of ZnO nanowire Schottky barrier based on the triboelectric-nanogenerator-powered surface-ionic-gate[J]. Nano Energy, 60, 680-688(2019).
[25] KUMARESAN Y, MIN G B, DAHIYA A S, et al. Kirigami and mogul-patterned ultra-stretchable high-performance ZnO nanowires-based photodetector[J]. Advanced Materials Technologies, 7, 2100804(2022).
[26] DUAN L, HE F N, TIAN Y, et al. Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO: Al nanorod-array-film structure with stable schottky barrier[J]. ACS Applied Materials & Interfaces, 9, 8161-8168(2017).
[27] ZHU ZH F, WANG SH L, ZHU Y, et al. Fiber-shaped ZnO/graphene schottky photodetector with strain effect[J]. Advanced Materials Interfaces, 5, 1800136(2018).
[28] DHAR S, CHAKRABORTY P, MAJUMDER T, et al. CdS-decorated al-doped ZnO nanorod/polymer schottky junction ultraviolet–visible dual-wavelength photodetector[J]. ACS Applied Nano Materials, 1, 3339-3345(2018).
[29] DHAR S, MAJUMDER T, CHAKRABORTY P, et al. DMSO modified PEDOT: PSS polymer/ZnO nanorods Schottky junction ultraviolet photodetector: photoresponse, external quantum efficiency, detectivity, and responsivity augmentation using N doped graphene quantum dots[J]. Organic Electronics, 53, 101-110(2018).
[30] DHAR S, MAJUMDER T, CHAKRABORTY P, et al. Enhancement of UV photodetector properties of ZnO nanorods/PEDOT: PSS Schottky junction by NGQD sensitization along with conductivity improvement of PEDOT: PSS by DMSO additive[J]. AIP Conference Proceedings, 1942, 080051(2018).
[31] CHEN M X, ZHAO B, HU G F, et al. Piezo-phototronic effect modulated deep UV photodetector based on ZnO-Ga2O3 heterojuction microwire[J]. Advanced Functional Materials, 28, 1706379(2018).
[32] ZHANG L F, WAN P, XU T, et al. Flexible ultraviolet photodetector based on single ZnO microwire/polyaniline heterojunctions[J]. Optics Express, 29, 19202-19213(2021).
[33] COSTAS A, FLORICA C, PREDA N, et al. Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications[J]. Scientific Reports, 9, 5553(2019).
[34] BUTANOVS E, VLASSOV S, KUZMIN A, et al. Fast-response single-nanowire photodetector based on ZnO/WS2 core/shell heterostructures[J]. ACS Applied Materials & Interfaces, 10, 13869-13876(2018).
[35] LEE D J, RYU S R, KUMAR G M, et al. Piezo-phototronic effect triggered flexible UV photodetectors based on ZnO nanosheets/GaN nanorods arrays[J]. Applied Surface Science, 558, 149896(2021).
[36] ZHOU H, YANG L, GUI P B, et al. Ga-doped ZnO nanorod scaffold for high-performance, hole-transport-layer-free, self-powered CH3NH3PbI3 perovskite photodetectors[J]. Solar Energy Materials and Solar Cells, 193, 246-252(2019).
[37] WANG H X, ZHANG P F, ZANG ZH G. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer[J]. Applied Physics Letters, 116, 162103(2020).
[38] YOU D T, XU CH X, ZHANG W, et al. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays[J]. Nano Energy, 62, 310-318(2019).
[39] WANG H, MA J, CONG L, et al. Piezoelectric effect enhanced flexible UV photodetector based on Ga2O3/ZnO heterojunction[J]. Materials Today Physics, 20, 100464(2021).
[40] MONDAL A, YADAV M K, SHRINGI S, et al. Extremely low dark current and detection range extension of Ga2O3 UV photodetector using Sn alloyed nanostructures[J]. Nanotechnology, 31, 294002(2020).
[41] LU Y C, ZHANG ZH F, YANG X, et al. High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes[J]. Nano Research, 15, 7631-7638(2022).
[42] WENG W Y, HSUEH T J, CHANG S J, et al. Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector[J]. IEEE Transactions on Nanotechnology, 10, 1047-1052(2011).
[43] ZHANG M M, KANG SH, WANG L, et al. Facile synthesis of
[44] ALHALAILI B, VIDU R, ISLAM M S. The growth of Ga2O3 nanowires on silicon for ultraviolet photodetector[J]. Sensors, 19, 5301(2019).
[45] ZHANG L Y, XIU X Q, LI Y W, et al. Solar-blind ultraviolet photodetector based on vertically aligned single-crystalline β-Ga2O3 nanowire arrays[J]. Nanophotonics, 9, 4497-4503(2020).
[46] WU Y T, FENG SH L, ZHANG M M, et al. Self-catalyst β-Ga2O3 semiconductor lateral nanowire networks synthesis on the insulating substrate for deep ultraviolet photodetectors[J]. RSC Advances, 11, 28326-28331(2021).
[47] XIE CH, LU X T, MA M R, et al. Catalyst-free vapor-solid deposition growth of β-Ga2O3 nanowires for DUV photodetector and image sensor application[J]. Advanced Optical Materials, 7, 1901257(2019).
[48] WANG SH L, SUN H L, WANG ZH, et al.
[49] WU C, HE C, GUO D, et al. Vertical
[50] JUBU P R, YAM F K. Development and characterization of MSM UV photodetector based on gallium oxide nanostructures[J]. Sensors and Actuators A:Physical, 312, 112141(2020).
[51] ZHENG ZH Y, LIU K W, CHENG ZH, et al. Single
[52] WEI J Y, SHEN L P, ZHENG ZH CH, et al. The suppression of dark current for achieving high-performance Ga2O3 nanorod array ultraviolet photodetector[J]. Ceramics International, 48, 12112-12117(2022).
[53] MITRA S, PAK Y, XIN B, et al. Solar-blind self-powered photodetector using solution-processed amorphous core-shell gallium oxide nanoparticles[J]. ACS Applied Materials & Interfaces, 11, 38921-38928(2019).
[54] CHEN X, LIU K W, ZHANG ZH ZH, et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film schottky junction[J]. ACS Applied Materials & Interfaces, 8, 4185-4191(2016).
[55] FAN M M, XU K L, CAO L, et al. Fast-speed self-powered PEDOT: PSS/
[56] FAN M M, XU K L, LI X Y, et al. Self-powered solar-blind UV/visible dual-band photodetection based on a solid-state PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector[J]. Journal of Materials Chemistry C, 9, 16459-16467(2021).
[57] SHIN G, KIM H Y, KIM J. Deep-ultraviolet photodetector based on exfoliated n-type
[58] CHEN Y CH, LU Y J, LIN CH N, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging[J]. Journal of Materials Chemistry C, 6, 5727-5732(2018).
[59] HE T, ZHANG X D, DING X Y, et al. Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity[J]. Advanced Optical Materials, 7, 1801563(2019).
[60] FAN M M, CAO L, XU K L, et al. Mixed-phase β-Ga2O3 and SnO2 metal-semiconductor-metal photodetectors with extended detection range from 293 nm to 330 nm[J]. Journal of Alloys and Compounds, 853, 157080(2021).
[61] HE CH R, GUO D Y, CHEN K, et al.
[62] YANG Y, LIU W M, HUANG T T, et al. Low deposition temperature amorphous ALD-Ga2O3 thin films and decoration with MoS2 multilayers toward flexible solar-blind photodetectors[J]. ACS Applied Materials & Interfaces, 13, 41802-41809(2021).
[63] GONG H H, WANG ZH P, YU X X, et al. Field-plated NiO/Ga2O3 p-n heterojunction power diodes with high-temperature thermal stability and near unity ideality factors[J]. IEEE Journal of the Electron Devices Society, 9, 1166-1171(2021).
[64] LI SH, GUO D Y, LI P G, et al. Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on
[65] LI SH, ZHI Y S, LU CH, et al. Broadband ultraviolet self-powered photodetector constructed on exfoliated
[66] BAE H, CHARNAS A, SUN X, et al. Solar-blind UV photodetector based on atomic layer-deposited Cu2O and nanomembrane
[67] CHEN K, WANG SH L, HE CH R, et al. Photoelectrochemical self-powered solar-blind photodetectors based on Ga2O3 nanorod array/electrolyte solid/liquid heterojunctions with a large separation interface of photogenerated carriers[J]. ACS Applied Nano Materials, 2, 6169-6177(2019).
[68] LIU SH, JIAO SH J, ZHANG J H, et al. High-detectivity and sensitive UVA photodetector of polycrystalline CH3NH3PbCl3 improved by α-Ga2O3 nanorod array[J]. Applied Surface Science, 571, 151291(2022).
[69] ZHANG Y, XU W X, XU X J, et al. Self-powered dual-color UV-green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions[J]. The Journal of Physical Chemistry Letters, 10, 836-841(2019).
[70] JIANG J, HECK F, HOFMANN D M, et al. Synthesis of SnO2 nanowires using SnI2 as precursor and their application as high-performance self-powered ultraviolet photodetectors[J]. Physica Status Solidi (b), 255, 1700426(2018).
[71] MARIMUTHU G, SARAVANAKUMAR K, JEYADHEEPAN K, et al. Influence of twin boundaries on the photocurrent decay of nanobranch and dense-forest structured SnO2 UV photodetectors[J]. Superlattices and Microstructures, 128, 181-198(2019).
[72] LI Y H, HUANG W X, LIU H, et al. UV photodetector based on polycrystalline SnO2 nanotubes by electrospinning with enhanced performance[J]. Journal of Nanoparticle Research, 20, 334(2018).
[73] CHETRI P, DHAR J C. Au/GLAD-SnO2 nanowire array-based fast response Schottky UV detector[J]. Applied Physics A, 125, 286(2019).
[74] CHETRI P, DHAR J C. Improved photodetector performance of SnO2 nanowire by optimized air annealing[J]. Semiconductor Science and Technology, 35, 045014(2020).
[75] OZEL K, YILDIZ A. A self‐powered ultraviolet photodetector with ultrahigh photoresponsivity (208 mA·W−1) based on SnO2 nanostructures/Si heterojunctions[J]. Physica Status Solidi (RRL), 15, 2100085(2021).
[76] LOU ZH, YANG X L, CHEN H R, et al. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays[J]. Journal of Semiconductors, 39, 024002(2018).
[77] LONG ZH H, XU X J, YANG W, et al. Cross-bar SnO2-NiO nanofiber-array-based transparent photodetectors with high detectivity[J]. Advanced Electronic Materials, 6, 1901048(2020).
[78] HAN J K, SONG D S, LIM Y R, et al. Nonlinear photoelectric properties by strained MoS2 and SnO2 core-shell nanotubes for flexible visible light photodetectors[J]. Advanced Materials Technologies, 6, 2001105(2021).
[79] LI L D, LOU ZH, CHEN H R, et al. Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors[J]. Science China Materials, 62, 1139-1150(2019).
[80] CAI J, XU X J, SU L X, et al. Self-powered n-SnO2/p-CuZnS core-shell microwire UV photodetector with optimized performance[J]. Advanced Optical Materials, 6, 1800213(2018).
[81] GHOSH C, DWIVEDI S M M D, GHOSH A, et al. A novel Ag nanoparticles/TiO2 nanowires-based photodetector and glucose concentration detection[J]. Applied Physics A, 125, 810(2019).
[82] JOSHNA P, HAZRA A, CHAPPANDA K N, et al. Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array[J]. Semiconductor Science and Technology, 35, 015001(2020).
[83] ZHANG M, TUOKEDAERHAN K, ZHANG H Y, et al. Ultraviolet photodetector based on Au doped TiO2 nanowires array with low dark current[J]. Optoelectronics Letters, 15, 81-84(2019).
[84] GULLER O, PEKSU E, KARAAGAC H. Synthesis of TiO2 nanorods for schottky-type UV-photodetectors and third-generation solar cells[J]. Physica Status Solidi (a), 215, 1700404(2018).
[85] DONG Y N, ZHENG W J, YAN X M, et al. SnO2 nanorods arrays functionalized TiO2 nanoparticles based UV photodetector with high and fast response[J]. Journal of Materials Science:Materials in Electronics, 30, 13099-13107(2019).
[86] HSU C L, WU H Y, FANG C C, et al. Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles[J]. ACS Applied Energy Materials, 1, 2087-2095(2018).
[87] JUBU P R, CHAHROUR K M, YAM F K, et al. Titanium oxide nanotube film decorated with β-Ga2O3 nanoparticles for enhanced water splitting properties[J]. Solar Energy, 235, 152-162(2022).
[88] CAO R, XU J P, SHI SH B, et al. High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods[J]. Journal of Materials Chemistry C, 8, 9646-9654(2020).
[89] NI SH M, GUO F Y, WANG D B, et al. Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors[J]. ACS Sustainable Chemistry & Engineering, 6, 7265-7272(2018).
[90] BASHIRI R, IRFAN M S, MOHAMED N M, et al. Hierarchically SrTiO3@TiO2@Fe2O3 nanorod heterostructures for enhanced photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 46, 24607-24619(2021).
[91] LING C C, GUO T CH, ZHAO L, et al. TiO2@TiO2-xHx core-shell nanoparticle film/Si heterojunction for ultrahigh detectivity and sensitivity broadband photodetector[J]. Nanotechnology, 30, 415203(2019).
[92] HO Y R, CHANG Y H, LIN C H, et al. Al2O3-passivated TiO2 nanorods for solid–liquid heterojunction ultraviolet photodetectors[J]. Journal of Materials Science, 56, 6052-6063(2021).
[93] MAURYA M R, TOUTAM V, BATHULA S, et al. Wide spectral photoresponse of template assisted out of plane grown ZnO/NiO composite nanowire photodetector[J]. Nanotechnology, 31, 025705(2020).
[94] YU N S, LI H O, WU Y F. A high-sensitivity, fast-response, rapid-recovery UV photodetector based on p-GaN/NiO nanostructures/n-GaN sandwich structure[J]. Solid State Sciences, 104, 106206(2020).
[95] YU N S, LI H O, QI Y. NiO nanosheet/GaN heterojunction self-powered ultraviolet photodetector grown by a solution method[J]. Optical Materials Express, 9, 26-34(2019).
[96] REDDY K C S, SAHATIYA P, SANTOS-SAUCEDA I, et al. One-step fabrication of 1D p-NiO nanowire/n-Si heterojunction: development of self-powered ultraviolet photodetector[J]. Applied Surface Science, 513, 145804(2020).
[97] JAYALAKSHMI G, SARAVANAN K, NAVAS J, et al. Fabrication of
[98] SABZEHPARVAR M, KIANI F, TABRIZI N S. Mesoporous-assembled TiO2-NiO-Ag nanocomposites with p-n/Schottky heterojunctions for enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 876, 160133(2021).
[99] ZHANG Y F, JI T, ZHU J Q, et al. A high performance self-powered heterojunction photodetector based on NiO nanosheets on an n-Si (1 0 0) modified substrate[J]. Materials Letters, 285, 128995(2021).
[100] YE T, YU L M, LI S L, et al. High-performance wide-spectrum photoresponse photodetector based on 3D porous In2O3 microcubes[J]. Materials Letters, 314, 131917(2022).
[101] [101] RAN W H, LOU ZH, SHEN G ZH. Ultrahighsensitivity photodetect from ultraviolet to visible based on Gadoped In2O3 nanowire phototransist with topgate structure[C]. Proceedings of the 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), IEEE, 2021.
[102] TIEN L C, YANG F M, HUANG S C, et al. Single Zn2GeO4 nanowire high-performance broadband photodetector[J]. Journal of Applied Physics, 124, 174503(2018).
[103] CHEN SH, LOU ZH, CHEN D, et al. Printable Zn2GeO4 microwires based flexible photodetectors with tunable photoresponses[J]. Advanced Materials Technologies, 3, 1800050(2018).
[104] HU J N, LIU K, MA T, et al. Zn2GeO4 nanowires synthesized by dual laser-hydrothermal method for deep-ultraviolet photodetectors[J]. Optics & Laser Technology, 140, 106946(2021).
Get Citation
Copy Citation Text
Xing CHEN, Chang ZHOU, Ke-wei LIU, De-zhen SHEN. Review of ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide[J]. Chinese Optics, 2022, 15(5): 912
Category: Review
Received: Jun. 15, 2022
Accepted: --
Published Online: Sep. 29, 2022
The Author Email: