Chinese Optics, Volume. 17, Issue 4, 834(2024)
Fully complex optical neural network with insertion-loss robustness
[2] WANG ZH J. Progress in optical computing technology[J]. Bulletin of Chinese Academy of Sciences, 2, 205(1987).
[8] WANG J, YANG X F. Research progress and prospects of photonic chips[J]. World Science, 29-31(2020).
[11] [11] MARQUEZ B A, HUANG CH R, PRUCNAL P R, et al. Neuromphic Silicon Photonics f Artificial Intelligence [M]LOCKWOOD D J, PAVESI L. Silicon Photonics IV. Cham: Springer, 2021: 417447.
[13] GIAMOUGIANNIS G, TSAKYRIDIS A, MORALIS-PEGIOS M et al. Universal linear optics revisited: new perspectives for neuromorphic computing with silicon photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 6200116(2023).
[15] WILLIAMSON I A D, HUGHES T W, MINKOV M et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7700412(2020).
[19] SHOKRANEH. F, NEZAMI M S, LIBOIRON-LADOUCEUR O. Theoretical and experimental analysis of a 44 recongurable MZI-based linear optical processor[J]. Journal of Lightwave Technology, 1(2021).
Get Citation
Copy Citation Text
Hui-bin CHEN, Kai-fei TANG, Zhen-yu YOU. Fully complex optical neural network with insertion-loss robustness[J]. Chinese Optics, 2024, 17(4): 834
Received: Nov. 2, 2023
Accepted: --
Published Online: Aug. 9, 2024
The Author Email: