Journal of Inorganic Materials, Volume. 39, Issue 1, 1(2024)

Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application

Jiaqian ZHENG1,2, Xiao LU3,4, Yajie LU3,5, Yingjun WANG1,2, Zhen WANG1,3,5、*, and Jianxi LU3,4、*
Author Affiliations
  • 11. National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
  • 22. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
  • 33. Shanghai Orthopaedic Biotechnology Innovation Center, Shanghai 201114, China
  • 44. Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai 201114, China
  • 55. Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
  • show less
    References(102)

    [1] LEMONS J E. Ceramics: past, present, and future[J]. Bone, 121S(1996).

    [2] WILLIAMS D F. The plasticity of biocompatibility[J]. Biomaterials, 296: 122077(2023).

    [3] WILLIAMS D. Revisiting the definition of biocompatibility[J]. Med. Device Technol., 10(2003).

    [8] DIAO J, OUYANG J, DENG T et al. 3D-plotted beta-tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical-sized calvarial defect rat model[J]. Adv. Healthc. Mater.(2018).

    [9] LI M, FU X, GAO H et al. Regulation of an osteon-like concentric microgrooved surface on osteogenesis and osteoclastogenesis[J]. Biomaterials, 216: 119269(2019).

    [12] LIU X, ZHAO N, LIANG H et al. Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/ angiogenesis[J]. J. Orthop. Translat., 37: 152(2022).

    [13] LU Q, DIAO J, WANG Y et al. 3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration[J]. Bioact. Mater., 26: 413(2023).

    [14] DIAO J J, DING H W, HUANG M Q et al. Bone defect model dependent optimal pore sizes of 3D-plotted beta-tricalcium phosphate scaffolds for bone regeneration[J]. Small Methods, 11(2019).

    [15] SONG C, LIU L, DENG Z et al. Research progress on the design and performance of porous titanium alloy bone implants[J]. J. Mater. Res. Technol., 23: 2626(2023).

    [17] LU J, WANG Z[M]. Microstructure of bioceramics:biological effects and clinical application, 26(2020).

    [21] XIE Y, HARDOUIN P, ZHU Z et al. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold[J]. Tissue Eng., 3535(2006).

    [22] XIE Y, ZHU Z, TANG T et al. Using perfusion bioreactor for mesenchymal stem cell proliferation in large tricalcium phosphate scaffold[J]. Chinese J. Orthop., 1633(2006).

    [23] FORRESTAL D P, ALLENBY M C, SIMPSON B et al. Personalized volumetric tissue generation by enhancing multiscale mass transport through 3D printed scaffolds in perfused bioreactors[J]. Adv. Healthc. Mater.(2022).

    [27] ZHANG Z, DU J, WEI Z et al. Numerical simulation of dynamic seeding of mesenchymal stem cells in pore structure[J]. Comput. & Mathemat. Appl., 88(2020).

    [28] KUBOKI Y, JIN Q M, TAKITA H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis[J]. Bone and Joint Surg.-Am., 83A: S105(2001).

    [29] MAHAPATRA C, KUMAR P, PAUL M K et al. Angiogenic stimulation strategies in bone tissue regeneration[J]. Tissue Cell, 79: 101908(2022).

    [33] SHEN M, LI Y, LU F et al. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration[J]. Bioact. Mater., 25: 374(2023).

    [35] XIAO X, WANG W, LIU D et al. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways[J]. Sci. Rep., 5: 9409(2015).

    [39] LU Y J, WANG Z, LU X et al. Minimally invasive treatment for osteonecrosis of the femoral head in ARCO stage Ⅱ and Ⅲ with bioceramic system[J]. Chin. J. Repar. Reconst. Surgery, 1291(2019).

    [41] KUNISADA T, HASEI J, FUJIWARA T et al. Radiographic and clinical assessment of unidirectional porous hydroxyapatite to treat benign bone tumors[J]. Sci. Rep., 10: 21578(2020).

    [43] IKUTA K, NISHIDA Y, OTA T et al. A clinical trial of a unidirectional porous tricalcium phosphate filling for defects after resection of benign bone lesions: a prospective multicenter study[J]. Sci. Rep., 12: 16060(2022).

    [46] ZHANG Y, SHU T, WANG S et al. The osteoinductivity of calcium phosphate-based biomaterials: a tight interaction with bone healing[J]. Front Bioeng. Biotechnol., 10: 911180(2022).

    [47] STASTNY P, SEDLACEK R, SUCHY T et al. Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro[J]. Mater. Sci. Eng.: C, 100: 544(2019).

    [53] TAJVAR S, HADJIZADEH A, SAMANDARI S S. Scaffold degradation in bone tissue engineering: an overview[J]. Int. Biodeter. & Biodegr., 105599(2023).

    [54] BOHNER M, SANTONI B L G, DOBELIN N. Beta-tricalcium phosphate for bone substitution: synthesis and properties[J]. Acta Biomater., 113: 23(2020).

    [57] SIMON J L, ROY T D, PARSONS J R et al. Engineered cellular response to scaffold architecture in a rabbit trephine defect[J]. J. Biomed. Mater. Res. A, 275(2003).

    [61] ZHI W, WANG X, SUN D et al. Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants[J]. Bioact. Mater., 11: 240(2022).

    [67] TANAKA T, KUMAGAE Y, SAITO M et al. Bone formation and resorption in patients after implantation of beta-tricalcium phosphate blocks with 60% and 75% porosity in opening-wedge high tibial osteotomy[J]. J. Biomed. Mater. Res. B Appl. Biomater., 453(2008).

    [68] OGOSE A, HOTTA T, KAWASHIMA H et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors[J]. J. Biomed. Mater. Res. B Appl. Biomater., 94(2005).

    [71] ZHANG Y, ZHANG Q, HE F et al. Fabrication of cancellous- bone-mimicking β-tricalcium phosphate bioceramic scaffolds with tunable architecture and mechanical strength by stereolithography 3D printing[J]. J. Europ. Ceram. Soci., 6713(2022).

    [77] LU Y, CHEN G, LONG Z et al. Novel 3D-printed prosthetic composite for reconstruction of massive bone defects in lower extremities after malignant tumor resection[J]. J. Bone Oncol., 16: 100220(2019).

    [78] KELLY C N, WANG T, CROWLEY J et al. High-strength, porous additively manufactured implants with optimized mechanical osseointegration[J]. Biomaterials, 279: 121206(2021).

    [81] POBLOTH A M, CHECA S, RAZI H et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep[J]. Sci. Transl. Med., 8828(2018).

    [84] YUAN J, WANG B, HAN C et al. Nanosized-Ag-doped porous beta-tricalcium phosphate for biological applications[J]. Mater. Sci. Eng. C Mater. Biol. Appl., 114: 111037(2020).

    [94] GAO Y, CHENG J, LONG Z et al. Repair of segmental ulnar bone defect in juvenile caused by osteomyelitis with induced membrane combined with tissue-engineered bone:a case report with 4-year follow-up[report]. Int. J. Surg. Case Rep.(2022).

    [98] JUN F, ZHENG G, HONGBIN F et al. Aplication of 3D-printed prosthesis on construction of long segmental bone defect after tumor resection[J]. Chin. J. Orthop., 433(2017).

    [100] BROWN T S, SALIB C G, ROSE P S et al. Reconstruction of the hip after resection of periacetabular oncological lesions: a systematic review[J]. Bone Joint J., 2018.

    [101] THOMAS D, SINGH D. 3D-printing for engineering the next generation of artificial trabecular bone structures[J]. Int. J. Surg., 46: 195(2017).

    [102] GAO P, ZHANG H, LIU Y et al. Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo[J]. Sci. Rep., 6: 23367(2016).

    Tools

    Get Citation

    Copy Citation Text

    Jiaqian ZHENG, Xiao LU, Yajie LU, Yingjun WANG, Zhen WANG, Jianxi LU. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application[J]. Journal of Inorganic Materials, 2024, 39(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 20, 2023

    Accepted: --

    Published Online: Mar. 28, 2024

    The Author Email: Zhen WANG (wangzhen@fmmu.edu.cn), Jianxi LU (lujianxi888@hotmail.com)

    DOI:10.15541/jim20230244

    Topics