Laser & Optoelectronics Progress, Volume. 59, Issue 2, 0210021(2022)

Defogging Algorithm Based on Image Features and Wavelet Transform

Lifeng He1,2, Pu Yuan1、*, Guangbin Zhou1, Liangliang Su1, and Bofan Lu1
Author Affiliations
  • 1School of Electrical and Information Engineering and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an , Shaanxi 710021, China
  • 2School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi 480-1198, Japan
  • show less
    Figures & Tables(16)
    Flow chart of proposed algorithm
    Simple texture images
    Middle texture images
    Complex texture images
    Comparison of dark channel results. (a) Foggy map; (b) Cheng's algorithm; (c) Jeong's algorithm; (d) proposed algorithm
    Flow chart of image enhancement technology
    Comparison of defogging image results of group 1. (a) Foggy map; (b) Retinex; (c) Histogram; (d) DCP; (e) CAP; (f) WCAL; (g) AODnet; (h) proposed algorithm
    Comparison of defogging image results of group 2. (a) Foggy map; (b) Retinex; (c) Histogram; (d) DCP; (e) CAP; (f) WCAL; (g) AODnet; (h) proposed algorithm
    • Table 1. Complexity of texture images

      View table

      Table 1. Complexity of texture images

      ScenceSimple texture imageMiddle texture imageComplex texture image
      (a)0.49880.60740.6635
      (b)0.46490.61560.6186
      (c)0.58020.59260.7240
      (d)0.57730.58750.6386
    • Table 2. Time comparison of dark channel map

      View table

      Table 2. Time comparison of dark channel map

      ScenceCheng’s algorithmJeong’s algorithmProposed algorithm
      Chart 10.44710.93350.5094
      Chart 21.46632.79921.7851
    • Table 3. Comparison of PSNR of Fig. 7

      View table

      Table 3. Comparison of PSNR of Fig. 7

      ScenceRetinexHistogramDCPCAPWCALAODnetProposed algorithm
      Chart 110.958723.056110.999011.939611.311613.913213.7878
      Chart 29.978020.966910.641614.001018.710115.038915.6016
      Chart 310.22428.42639.323910.651614.007811.678812.3738
      Chart 410.143123.917213.809811.898615.949614.104814.8098
    • Table 4. Comparison of SSIM of Fig. 7

      View table

      Table 4. Comparison of SSIM of Fig. 7

      ScenceRetinexHistogramDCPCAPWCALAODnetProposed algorithm
      Chart 10.49600.90500.68230.82760.79590.85340.8525
      Chart 20.53110.85250.67480.81340.85590.60120.7340
      Chart 30.44520.91370.50190.58890.63460.72800.7058
      Chart 40.48790.87540.67890.59100.60920.73310.8161
    • Table 5. Comparison of MAE of Fig. 7

      View table

      Table 5. Comparison of MAE of Fig. 7

      ScenceRetinexHistogramDCPCAPWCALAODnetProposed algorithm
      Chart 162.225512.731768.780162.311367.382750.844049.9077
      Chart 273.88617.042572.045247.198725.228144.332344.4614
      Chart 374.568426.323583.421773.421546.625667.029565.5872
      Chart 475.360320.651853.585056.048330.570145.810545.2285
    • Table 6. Comparison of PSNR of Fig. 8

      View table

      Table 6. Comparison of PSNR of Fig. 8

      ScenceRetinexHistogramDCPCAPWCALAODnetProposed algorithm
      Chart 19.667621.01847.85018.57127.967810.07968.4615
      Chart 213.134630.715416.703317.817516.504116.015016.7922
      Chart 310.264019.211811.829012.218314.143213.644414.2980
      Chart 411.878729.60829.363614.229011.258914.389914.7609
    • Table 7. Comparison of SSIM of Fig. 8

      View table

      Table 7. Comparison of SSIM of Fig. 8

      ScenceRetinexHistogramDCPCAPWCALAODnetProposed algorithm
      Chart 10.51470.89430.36660.44000.40220.43650.4886
      Chart 20.57160.83710.90350.93770.87040.87500.9056
      Chart 30.55740.84440.73780.79350.67860.81180.8480
      Chart 40.44690.86320.58670.77730.61900.76810.8254
    • Table 8. Comparison of MAE of Fig. 8

      View table

      Table 8. Comparison of MAE of Fig. 8

      ScenceRetinexHistogramDCPCAPWCALAODnetProposed algorithm
      Chart 181.828921.792999.820594.142598.735190.688292.8781
      Chart 249.74685.003532.991126.037234.703439.046438.7951
      Chart 375.87356.325961.194458.378444.487652.173152.9149
      Chart 458.697221.792981.453945.902064.452855.446353.3221
    Tools

    Get Citation

    Copy Citation Text

    Lifeng He, Pu Yuan, Guangbin Zhou, Liangliang Su, Bofan Lu. Defogging Algorithm Based on Image Features and Wavelet Transform[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0210021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 14, 2021

    Accepted: Jun. 11, 2021

    Published Online: Dec. 23, 2021

    The Author Email: Pu Yuan (271298011@qq.com)

    DOI:10.3788/LOP202259.0210021

    Topics