Journal of Optoelectronics · Laser, Volume. 36, Issue 1, 36(2025)

High dynamic imaging method based on perceptual priori and component enhancement

WANG Wei1,2、*, ZHANG Siyuan2, and LIU Xiaorui2
Author Affiliations
  • 1Department of Basic Teaching, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 2School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • show less
    References(23)

    [2] [2] CUI Y, CHEN A, YANG B, et al. Human visual perception-based multi-exposure fusion image quality assessment[J]. Symmetry, 2019, 11(12):1494.

    [4] [4] XU F, LIU J, SONG Y, et al. Multi-exposure image fusion techniques: a comprehensive review[J]. Remote Sensing, 2022, 14(3):771.

    [5] [5] YANG Z, CHEN Y, LE Z, et al. GANFuse: a novel multi-exposure image fusion method based on generative adversarial networks[J]. Neural Computing and Applications, 2021, 33:6133-6145.

    [6] [6] ZHANG X. Benchmarking and comparing multi-exposure image fusion algorithms[J]. Information Fusion,2021,74:111-131.

    [7] [7] MA J, TANG L, FAN F, et al. SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7):1200-1217.

    [9] [9] PAUL S, SEVCENCO I S, AGATHOKLTS P. Multi-exposure and multi-focus image fusion in gradient domain[J]. Journal of Circuits, Systems and Computers, 2016, 25(10):1650123.

    [10] [10] MA K, DUANMU Z, ZHU H, et al. Deep guided learning for fast multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2019, 29:2808-2819.

    [11] [11] ZHANG Y, LIU Y, SUN P, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54:99-118.

    [12] [12] WANG Z, ZHAN J, DUAN C, et al. A review of vehicle detection techniques for intelligent vehicles[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(8):3811-3831.

    [13] [13] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-24, 2022, New Orleans, LA, USA. New York: IEEE, 2022:10684-10695.

    [14] [14] ZHANG Y, GUO X, MA J, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129:1013-1037.

    [15] [15] SARKAR A, BANERJEE A, SINGH P K, et al. 3D human action recognition: through the eyes of researchers[J]. Expert Systems with Applications, 2022, 193:116424.

    [16] [16] LI H, MA K, YONG H, et al. Fast multi-scale structural patch decomposition for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2020, 29:5805-5816.

    [17] [17] LI G, QIAN X, QU X. SOSMaskFuse: An infrared and visible image fusion architecture based on salient object segmentation mask[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9):10118-10137.

    [18] [18] MUHAMMAD G, ALSHEHRI F, KARRAY F, et al. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems[J]. Information Fusion, 2021, 76:355-375.

    [19] [19] DENG X, ZHANG Y, XU M, et al. Deep coupled feedback network for joint exposure fusion and image super-resolution[J]. IEEE Transactions on Image Processing, 2021, 30:3098-3112.

    [20] [20] YANG Y, ZHANG Y, HUANG S, et al. Infrared and visible image fusion using visual saliency sparse representation and detail injection model[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70:1-15.

    [22] [22] YIN W, HE K, XU D, et al. Significant target analysis and detail preserving based infrared and visible image fusion[J]. Infrared Physics & Technology, 2022, 121:104041.

    [23] [23] JOHN V, MITA S. Deep feature-level sensor fusion using skip connections for real-time object detection in autonomous driving[J]. Electronics, 2021, 10(4):424.

    [24] [24] ZHANG X, YE P, XIAO G. VIFB: A visible and infrared image fusion benchmark[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, June 14-19, 2020, Seattle, WA, USA. New York: IEEE, 2020:104-105.

    [25] [25] TANG L, YUAN J, MA J. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 2022, 82:28-42.

    [26] [26] ERSHOV E, SAVCHIK A, SHEPELEV D, et al. NTIRE 2022 challenge on night photography rendering[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 19-20, 2022, New Orleans, LA, USA. New York: IEEE, 2022:1287-1300.

    [27] [27] LV F, LI Y, LU F. Attention guided low-light image enhancement with a large scale low-light simulation dataset[J]. International Journal of Computer Vision, 2021, 129(7):2175-2193.

    Tools

    Get Citation

    Copy Citation Text

    WANG Wei, ZHANG Siyuan, LIU Xiaorui. High dynamic imaging method based on perceptual priori and component enhancement[J]. Journal of Optoelectronics · Laser, 2025, 36(1): 36

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 10, 2023

    Accepted: Jan. 23, 2025

    Published Online: Jan. 23, 2025

    The Author Email: WANG Wei (39846661@qq.com)

    DOI:10.16136/j.joel.2025.01.0236

    Topics