Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0637007(2025)

Infrared- and Visible-Image Alignment of Power Equipment Based on Local Normalization

Dahua Li, Wenpeng Zheng, Xuan Li*, Xiao Yu, and Qiang Gao
Author Affiliations
  • School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
  • show less
    Figures & Tables(9)
    Comparison of feature point detection methods. (a) Infrared images; (b) visible images
    Schematic of feature point main direction allocation
    Flow chart of descriptors for multiscale histogram of oriented gradients
    Local effects of precise matching methods for process optimization
    Experimental results. (a)‒(f) Partial experimental results for dataset 1; (g)‒(l) partial experimental results for dataset 2
    Fusion of grayscale images. (a)‒(f) Partial fusion grayscale image of dataset 1; (g)‒(l) partial fusion grayscale image of dataset 2
    Alignment performance evaluation results for ten algorithms. (a) Accuracy matching points evaluation results on dataset 1; (b) accuracy matching points evaluation results on dataset 2; (c) precision evaluation results on dataset 1; (d) precision evaluation results on dataset 2
    • Table 1. Root mean square error evaluation results

      View table

      Table 1. Root mean square error evaluation results

      Image pairPSO-SIFTLGHDCAO-C2FRIFTRIFT2LNIFTMoTIFSemLACSSMSHOG
      Dataset 1No.14.623.802.633.883.314.384.005.652.362.60
      No.22.0610.031.811.992.712.701.983.932.051.95
      No.33.0354.861.761.991.692.882.284.371.651.29
      No.41.2349.782.242.282.512.832.033.522.112.12
      No.52.742.063.035.211.85
      No.64.6398.932.3214.213.8022.4616.892.831.99
      No.71.9016.551.911.61
      No.82.442.179.061.24
      No.91.042.261.451.30
      No.103.753.317.942.81
      No.115.783.7041.462.332.16
      No.1210.175.394.446.095.27
      Dataset 2No.13.643.643.013.543.263.583.434.042.952.72
      No.21.271.930.621.551.531.850.593.631.091.06
      No.32.682.692.242.922.622.602.843.582.532.53
      No.42.635.332.182.972.972.852.613.301.861.95
      No.51.491.895.752.832.69
      No.60.882.873.643.873.24
      No.71.802.493.032.25
      No.81.874.165.273.462.81
      No.91.215.542.13
      No.100.961.482.482.76
      No.111.212.011.311.69
      No.121.971.361.841.05
      Dataset 1Average RMSE4.0443.482.534.878.363.206.557.203.752.18
      Dataset 2Average RMSE1.803.402.492.752.602.722.374.172.482.24
    • Table 2. Running time for each algorithm

      View table

      Table 2. Running time for each algorithm

      DatasetPSO-SIFTLGHDCAO-C2FRIFTRIFT2LNIFTMoTIFSemLACSS

      MS

      HOG

      Dataset 115.69.498.3221.1813.7447.1010.3417.396.9013.09
      Dataset 217.149.559.5428.1712.3938.587.1813.048.3512.07
    Tools

    Get Citation

    Copy Citation Text

    Dahua Li, Wenpeng Zheng, Xuan Li, Xiao Yu, Qiang Gao. Infrared- and Visible-Image Alignment of Power Equipment Based on Local Normalization[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0637007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jul. 1, 2024

    Accepted: Aug. 2, 2024

    Published Online: Mar. 6, 2025

    The Author Email: Xuan Li (16600268451@stud.tjut.edu.cn)

    DOI:10.3788/LOP241592

    CSTR:32186.14.LOP241592

    Topics