Journal of Optoelectronics · Laser, Volume. 36, Issue 2, 185(2025)

Multi-level deep feature fusion for breast cancer histopathology image classification

YANG Fang1, ZOU Ying2, DING Xueyan1, and ZHANG Jianxin1、*
Author Affiliations
  • 1School of Computer Science and Engineering, Dalian Minzu University, Dalian, Liaoning 116600, China
  • 2Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • show less
    References(11)

    [3] [3] TING F F, TAN Y J, SIM K S. Convolutional neural network improvement for breast cancer classification[J]. Expert Systems with Applications, 2019, 120:103-115.

    [5] [5] ZEROUAOUI H, IDRI A. Deep hybrid architectures for binary classification of medical breast cancer images[J]. Biomedical Signal Processing and Control, 2022, 71:103226.

    [6] [6] LIU M, HU L, TANG Y, et al. A deep learning method for breast cancer classification in the pathology images[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(10):5025-5032.

    [7] [7] ZOU Y, ZHANG J, HUANG S, et al. Breast cancer histopathological image classification using attention high-order deep network[J]. International Journal of Imaging Systems and Technology, 2022, 32(1):266-279.

    [8] [8] CHATTOPADHYAY S, DEY A, SINGH P K, et al. DRDA-Net: Dense residual dual-shuffle attention network for breast cancer classification using histopathological images[J]. Computers in Biology and Medicine, 2022, 145:105437.

    [9] [9] XU B, LIU J, HOU X, et al. Attention by selection: A deep selective attention approach to breast cancer classification[J]. IEEE Transactions on Medical Imaging, 2019, 39(6):1930-1941.

    [10] [10] HE Z, LIN M, XU Z, et al. Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture[J]. Information Sciences, 2022, 608:1093-1112.

    [12] [12] NAHID A A, KONG Y. Histopathological breast-image classify cation using local and frequency domains by convolutional neural network[J]. Information, 2018, 9(1):19.

    [13] [13] ALOM M Z, YAKOPCIC C, NASRIN M S, et al. Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network[J]. Journal of Digital Imaging, 2019, 32(4):605-617.

    [14] [14] HOU Y. Breast cancer pathological image classification based on deep learning[J]. Journal of X-ray Science and Technology,2020,28(4):727-738.

    [15] [15] ZOU Y, CHEN S, SUN Q, et al. DCET-Net: Dual-stream convolution expanded transformer for breast cancer histopathological image classification[C]//2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), December 9-12, 2021, Houston, TX, USA. New York: IEEE, 2021:1235-1240.

    Tools

    Get Citation

    Copy Citation Text

    YANG Fang, ZOU Ying, DING Xueyan, ZHANG Jianxin. Multi-level deep feature fusion for breast cancer histopathology image classification[J]. Journal of Optoelectronics · Laser, 2025, 36(2): 185

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 11, 2023

    Accepted: Jan. 23, 2025

    Published Online: Jan. 23, 2025

    The Author Email: ZHANG Jianxin (jxzhang0411@163.com)

    DOI:10.16136/j.joel.2025.02.0430

    Topics