Acta Optica Sinica, Volume. 40, Issue 16, 1611002(2020)
Transmissive Imaging Through Scattering Media Based on Multi-Wavelength Illumination
[1] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).
[3] Horstmeyer R, Ruan H, Yang C. Guide star-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015).
[4] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 23, 12189-12206(2015).
[5] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).
[6] Chaigne T, Katz O, Boccara A C et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 8, 58-64(2014).
[7] Andreoli D, Volpe G, Popoff S et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 5, 10347(2015).
[8] Xu X. Liu H L H, Wang L H V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154(2011).
[9] Wang Y M, Judkewitz B, Dimarzio C A et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 3, 928(2012).
[10] Liu Y, Lai P X, Ma C et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 6, 5904(2015).
[11] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 61, 2328-2331(1988).
[14] Cua M, Zhou E H, Yang C. Imaging moving targets through scattering media[J]. Optics Express, 25, 3935-3945(2017).
[17] Guo C F, Liu J T, Wu T F et al. Tracking moving targets behind a scattering medium via speckle correlation[J]. Applied Optics, 57, 905-913(2018).
[18] Tomita Y, Nakagawa K, Asakura T. Fibrous radial structure of speckle patterns in polychromatic light[J]. Applied Optics, 19, 3211-3218(1980).
[19] Stansberg C T. Surface roughness measurements by means of polychromatic speckle patterns[J]. Applied Optics, 18, 4051-4060(1979).
[20] Lehmann P. Aspect ratio of elongated polychromatic far-field speckles of continuous and discrete spectral distribution with respect to surface roughness characterization[J]. Applied Optics, 41, 2008-2014(2002).
[21] Labeyrie A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images[J]. Astronomy and Astrophysics, 6, 85-87(1970).
[22] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 3, 27-29(1978).
[23] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).
[24] Seem P R. Buchanan J D R, Cowburn R P. Impact of surface roughness on laser surface authentication signatures under linear and rotational displacements[J]. Optics Letters, 34, 3175-3177(2009).
[25] Cheng C F, Qi D P, Liu D L et al. The computational simulations of the Gaussian correlation random surface and its light-scattering speckle field and the analysis of the intensity probability density[J]. Acta Physica Sinica, 48, 1635-1643(1999).
Get Citation
Copy Citation Text
Xin Wang, Honglin Liu, Chenyu Hu, Pengwei Wang, Shensheng Han. Transmissive Imaging Through Scattering Media Based on Multi-Wavelength Illumination[J]. Acta Optica Sinica, 2020, 40(16): 1611002
Category: Imaging Systems
Received: Mar. 12, 2020
Accepted: May. 6, 2020
Published Online: Aug. 7, 2020
The Author Email: Liu Honglin (hlliu4@hotmail.com)