Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 3, 263(2025)

Research progress of water vapor differential absorption lidar technique

ZHANG Simin1,2, HUANG Jian2, SHI Dongfeng2, YUAN Kee2, and HU Shunxing2、*
Author Affiliations
  • 1Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
  • 2Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS,Chinese Academy of Sciences, Hefei 230031, China
  • show less
    References(68)

    [1] Su B D, Sun H M, Li X C et al. Impact of climate change on terrestrial water cycle in China[J]. Transactions of Atmospheric Sciences, 43, 1096-1105(2020).

    [2] Charlesworth E, Plöger F, Birner T et al. Stratospheric water vapor affecting atmospheric circulation[J]. Nature Communications, 14, 3925(2023).

    [3] Garfinkel C I, Waugh D W, Oman L D et al. Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone[J]. Journal of Geophysical Research: Atmospheres, 118, 9658-9672(2013).

    [4] Patel V K, Kuttippurath J. Increase in tropospheric water vapor amplifies global warming and climate change[J]. Ocean-Land-Atmosphere Research, 2, 15(2023).

    [5] Yang Y B. Development of laser radar technology and its application to atmospheric environment monitoring[J]. Journal of Chengdu University of Information Technology, 20, 725-727(2005).

    [6] Hicks-Jalali S, Sica R J, Martucci G et al. A Raman lidar tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland[J]. Atmospheric Chemistry & Physics, 20, 9619-9640(2020).

    [7] Kulla B S, Ritter C. Water vapor calibration: Using a Raman lidar and radiosoundings to obtain highly resolved water vapor profiles[J]. Remote Sensing, 11, 616(2019).

    [8] Vérèmes H, Payen G, Keckhut P et al. Validation of the water vapor profiles of the Raman lidar at the maïdo observatory(Reunion Island) calibrated with global navigation satellite system integrated water vapor[J]. Atmosphere, 10, 713(2019).

    [9] Schneider M, Hase F. Ground-based FTIR water vapour profile analyses[J]. Atmospheric Measurement Techniques, 2, 609-619(2009).

    [10] Browell E V, Ismail S, Grossmann B E. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region[J]. Applied Optics, 30, 1517-1524(1991).

    [11] Gordon I E, Rothman L S, Hill C et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3-69(2017).

    [12] Wulfmeyer V, Craig W. Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory[J]. Applied Optics, 40, 5304-5320(2001).

    [13] Wulfmeyer V, Craig W. Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system[J]. Applied Optics, 40, 5321-5336(2001).

    [14] Guerin F, Pain T, Palmade J L et al. WALES: Water vapor lidar experiment in space[C](2004).

    [15] Wirth M, Fix A, Mahnke P et al. The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance[J]. Applied Physics B, 96, 201-213(2009).

    [16] Hong G L, Li J T, Kong W et al. 935 nm differential absorption lidar system and water vapor profiles in convective boundary layer[J]. Acta Optica Sinica, 37, 201003(2017).

    [17] Hong G L, Li J T, Wang J Y et al. Advance of ground based differential absorption lidar at 0.94 μm[J]. Infrared and Laser Engineering, 48, 1203009(2019).

    [18] Grossmann B E, Browell E V. Spectroscopy of water vapor in the 720-nm wavelength region: Line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts[J]. Journal of Molecular Spectroscopy, 136, 264-294(1989).

    [19] Grossmann B E, Browell E V. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region[J]. Journal of Molecular Spectroscopy, 138, 562-595(1989).

    [20] Ismail S, Browell E V. Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis[J]. Applied Optics, 28, 3603-3615(1989).

    [21] Bösenberg J. Measurements of the pressure shift of water vapor absorption lines by simultaneous photoacoustic spectroscopy[J]. Applied Optics, 24, 3531(1985).

    [22] Cahen C, Megie G. A spectral limitation of the range resolved differential absorption lidar technique[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 25, 151-157(1981).

    [23] Schotland R M. Errors in the lidar measurement of atmospheric gases by differential absorption[J]. Journal of Applied Meteorology, 13, 71-77(1974).

    [24] Browell E V, Wilkerson T D, McIlrath T J. Water vapor differential absorption lidar development and evaluation[J]. Applied Optics, 18, 3474-3483(1979).

    [25] Cahen C, Megie G, Flamant P. Lidar monitoring of the water vapor cycle in the troposphere[J]. Journal of Applied Meteorology, 21, 1506-1515(1982).

    [26] Cha S, Chan K P, Killinger D K. Tunable 21-μm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles[J]. Applied Optics, 30, 3938(1991).

    [27] Hardesty R M. Coherent DIAL measurement of range-resolved water vapor concentration[J]. Applied Optics, 23, 2545-2553(1984).

    [28] Ehret G, Kiemle C, Renger W et al. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system[J]. Applied Optics, 32, 4534(1993).

    [29] Higdon N S, Browell E V, Ponsardin P et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols[J]. Applied Optics, 33, 6422-6438(1994).

    [30] Browell E V, Ismail S. First lidar measurements of water vapor and aerosols from a high-altitude aircraft[C], ThA4(1995).

    [31] Ertel K, Linné H, Bösenberg J. Injection-seeded pulsed Ti: Sapphire laser with novel stabilization scheme and capability of dual-wavelength operation[J]. Applied Optics, 44, 5120-5126(2005).

    [32] Przybylski M, Otto B, Gerhardt H. Spectral purity of pulsed dye lasers[J]. Applied Physics B, 49, 201-203(1989).

    [33] Hänsch T W. Repetitively pulsed tunable dye laser for high resolution spectroscopy[J]. Applied Optics, 11, 895-898(1972).

    [34] Bruneau D, Cazeneuve H, Loth C et al. Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement[J]. Applied Optics, 30, 3930-3937(1991).

    [35] Bruneau D, Quaglia P, Flamant C et al. Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description[J]. Applied Optics, 40, 3450-3461(2001).

    [36] Wulfmeyer V. Ground-based differential absorption lidar for water-vapor and temperature profiling: Development and specifications of a high-performance laser transmitter[J]. Applied Optics, 37, 3804(1998).

    [37] Wagner G, Behrendt A, Wulfmeyer V et al. High-power Ti: Sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar[J]. Applied Optics, 52, 2454-2469(2013).

    [38] Poberaj G, Fix A, Assion A et al. Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: System description and assessment of accuracy[J]. Applied Physics B, 75, 165-172(2002).

    [39] Wagner G A, Plusquellic D F. Multi-frequency differential absorption LIDAR system for remote sensing of CO2 and H2O near 1.6 µm[J]. Optics Express, 26, 19420-19434(2018).

    [40] Hamperl J, Capitaine C, Dherbecourt J B et al. Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: Sensitivity analysis with respect to regional atmospheric variability[J]. Atmospheric Measurement Techniques, 14, 6675-6693(2021).

    [41] Hamperl J, Dherbecourt J B, Raybaut M et al. Range-resolved detection of boundary layer stable water vapor isotopologues using a ground-based 1.98 µm differential absorption LIDAR[J]. Optics Express, 30, 47199-47215(2022).

    [42] Carroll B J, Nehrir A R, Kooi S A et al. Differential absorption lidar measurements of water vapor by the high altitude lidar observatory (HALO): Retrieval framework and first results[J]. Atmospheric Measurement Techniques, 15, 605-626(2022).

    [43] Carroll B J, Nehrir A R, Barton-Grimley R A et al. Differential absorption lidar (DIAL) for profiling water vapor within and above the PBL[C](2020).

    [44] Repasky K S, Nehrir A R, Hawthorne J T et al. Extending the continuous tuning range of an external-cavity diode laser[J]. Applied Optics, 45, 9013-9020(2006).

    [45] Nehrir A R, Repasky K S, Carlsten J L et al. Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL)[J]. Journal of Atmospheric and Oceanic Technology, 26, 733-745(2009).

    [46] Nehrir A R, Repasky K S, Carlsten J L. Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere[J]. Journal of Atmospheric and Oceanic Technology, 28, 131-147(2011).

    [47] Spuler S M, Repasky K S, Morley B et al. Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor[J]. Atmospheric Measurement Techniques, 8, 1073-1087(2015).

    [48] Spuler S, Bernatsky T, Bunn C et al. A micro-pulse differential absorption lidar test network[J]. EPJ Web of Conferences, 237, 05001(2020).

    [49] Spuler S M, Hayman M, Stillwell R A et al. MicroPulse DIAL (MPD)–a diode-laser-based lidar architecture for quantitative atmospheric profiling[J]. Atmospheric Measurement Techniques, 14, 4593-4616(2021).

    [50] Kay J, Weckwerth T M, Lee W C et al. An OSSE study of the impact of micropulse differential absorption lidar (MPD) water vapor profiles on convective weather forecasting[J]. Monthly Weather Review, 150, 2787-2811.

    [51] Baker P W. Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar[J]. Applied Optics, 22, 2257(1983).

    [52] Imaki M, Tanaka H, Hirosawa K et al. Demonstration of the 1.53-µm coherent DIAL for simultaneous profiling of water vapor density and wind speed[J]. Optics Express, 28, 27078-27096(2020).

    [53] Iwai H, Aoki M. Evaluation of a coherent 2-µm differential absorption lidar for water vapor and radial wind velocity measurements[J]. Optics Express, 31, 13817-13836(2023).

    [54] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).

    [55] Wang Y T, Jiang G S, Li L L et al. Development review of optical gas absorption cell[J]. Journal of Atmospheric and Environmental Optics, 18, 401-419(2023).

    [56] Hansch T W, Couillaud B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity[J]. Optics Communications, 35, 441-444(1980).

    [57] Chen C S, Wang F, Liu S H et al. Review of frequency stabilization technology of semiconductor laser[J]. Chinese Journal of Quantum Electronics, 27, 513-521(2010).

    [58] Bjorklund G C, Levenson M D, Lenth W et al. Frequency modulation (FM) spectroscopy: Theory of lineshapes and signal-to-noise analysis[J]. Applied Physics B, 32, 145-152(1983).

    [59] Gawlik W, Zachorowski J. Stabilization of diode-laser frequency to atomic transitions[J]. Optica Applicata, 34, 607(2004).

    [60] Koch G J, Petros M, Yu J et al. Precise wavelength control of a single-frequency pulsed Ho:Tm:YLF laser[J]. Applied Optics, 41, 1718-1721(2002).

    [61] Numata K, Chen J R, Wu S T et al. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide[J]. Applied Optics, 50, 1047-1056(2011).

    [62] Koch G J, Beyon J Y, Gibert F et al. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: Design and application to atmospheric measurements[J]. Applied Optics, 47, 944-956(2008).

    [63] Koch G J, Barnes B W, Petros M et al. Coherent differential absorption lidar measurements of CO2[J]. Applied Optics, 43, 5092-5099(2004).

    [64] Dinovitser A, Hamilton M W, Vincent R A. Stabilized master laser system for differential absorption lidar[J]. Applied Optics, 49, 3274-3281(2010).

    [65] Koch G J, Dharamsi A N, Fitzgerald C M et al. Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide[J]. Applied Optics, 39, 3664-3669(2000).

    [66] Machol J L, Ayers T, Schwenz K T et al. Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor[J]. Applied Optics, 43, 3110-3121(2004).

    [67] Fix A, Ehret G, Löhring J et al. Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm[J]. Applied Physics B, 102, 905-915(2011).

    [68] Xie J D, Yan L P, Chen B Y et al. Automatic offset-frequency locking of external cavity diode laser in wide wavelength range[J]. Optics and Precision Engineering, 29, 211-219(2021).

    Tools

    Get Citation

    Copy Citation Text

    Simin ZHANG, Jian HUANG, Dongfeng SHI, Kee YUAN, Shunxing HU. Research progress of water vapor differential absorption lidar technique[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(3): 263

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: "Advanced technology of lidar and its application in atmospheric environment" Albun

    Received: Nov. 13, 2024

    Accepted: --

    Published Online: Jun. 9, 2025

    The Author Email: Shunxing HU (sxhu@aiofm.ac.cn)

    DOI:10.3969/j.issn.1673-6141.2025.03.003

    Topics