Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 3, 263(2025)
Research progress of water vapor differential absorption lidar technique
[1] Su B D, Sun H M, Li X C et al. Impact of climate change on terrestrial water cycle in China[J]. Transactions of Atmospheric Sciences, 43, 1096-1105(2020).
[2] Charlesworth E, Plöger F, Birner T et al. Stratospheric water vapor affecting atmospheric circulation[J]. Nature Communications, 14, 3925(2023).
[3] Garfinkel C I, Waugh D W, Oman L D et al. Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone[J]. Journal of Geophysical Research: Atmospheres, 118, 9658-9672(2013).
[4] Patel V K, Kuttippurath J. Increase in tropospheric water vapor amplifies global warming and climate change[J]. Ocean-Land-Atmosphere Research, 2, 15(2023).
[5] Yang Y B. Development of laser radar technology and its application to atmospheric environment monitoring[J]. Journal of Chengdu University of Information Technology, 20, 725-727(2005).
[6] Hicks-Jalali S, Sica R J, Martucci G et al. A Raman lidar tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland[J]. Atmospheric Chemistry & Physics, 20, 9619-9640(2020).
[7] Kulla B S, Ritter C. Water vapor calibration: Using a Raman lidar and radiosoundings to obtain highly resolved water vapor profiles[J]. Remote Sensing, 11, 616(2019).
[8] Vérèmes H, Payen G, Keckhut P et al. Validation of the water vapor profiles of the Raman lidar at the maïdo observatory(Reunion Island) calibrated with global navigation satellite system integrated water vapor[J]. Atmosphere, 10, 713(2019).
[9] Schneider M, Hase F. Ground-based FTIR water vapour profile analyses[J]. Atmospheric Measurement Techniques, 2, 609-619(2009).
[10] Browell E V, Ismail S, Grossmann B E. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region[J]. Applied Optics, 30, 1517-1524(1991).
[11] Gordon I E, Rothman L S, Hill C et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3-69(2017).
[12] Wulfmeyer V, Craig W. Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory[J]. Applied Optics, 40, 5304-5320(2001).
[13] Wulfmeyer V, Craig W. Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system[J]. Applied Optics, 40, 5321-5336(2001).
[14] Guerin F, Pain T, Palmade J L et al. WALES: Water vapor lidar experiment in space[C](2004).
[15] Wirth M, Fix A, Mahnke P et al. The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance[J]. Applied Physics B, 96, 201-213(2009).
[16] Hong G L, Li J T, Kong W et al. 935 nm differential absorption lidar system and water vapor profiles in convective boundary layer[J]. Acta Optica Sinica, 37, 201003(2017).
[17] Hong G L, Li J T, Wang J Y et al. Advance of ground based differential absorption lidar at 0.94 μm[J]. Infrared and Laser Engineering, 48, 1203009(2019).
[18] Grossmann B E, Browell E V. Spectroscopy of water vapor in the 720-nm wavelength region: Line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts[J]. Journal of Molecular Spectroscopy, 136, 264-294(1989).
[19] Grossmann B E, Browell E V. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region[J]. Journal of Molecular Spectroscopy, 138, 562-595(1989).
[20] Ismail S, Browell E V. Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis[J]. Applied Optics, 28, 3603-3615(1989).
[21] Bösenberg J. Measurements of the pressure shift of water vapor absorption lines by simultaneous photoacoustic spectroscopy[J]. Applied Optics, 24, 3531(1985).
[22] Cahen C, Megie G. A spectral limitation of the range resolved differential absorption lidar technique[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 25, 151-157(1981).
[23] Schotland R M. Errors in the lidar measurement of atmospheric gases by differential absorption[J]. Journal of Applied Meteorology, 13, 71-77(1974).
[24] Browell E V, Wilkerson T D, McIlrath T J. Water vapor differential absorption lidar development and evaluation[J]. Applied Optics, 18, 3474-3483(1979).
[25] Cahen C, Megie G, Flamant P. Lidar monitoring of the water vapor cycle in the troposphere[J]. Journal of Applied Meteorology, 21, 1506-1515(1982).
[26] Cha S, Chan K P, Killinger D K. Tunable 21-μm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles[J]. Applied Optics, 30, 3938(1991).
[27] Hardesty R M. Coherent DIAL measurement of range-resolved water vapor concentration[J]. Applied Optics, 23, 2545-2553(1984).
[28] Ehret G, Kiemle C, Renger W et al. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system[J]. Applied Optics, 32, 4534(1993).
[29] Higdon N S, Browell E V, Ponsardin P et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols[J]. Applied Optics, 33, 6422-6438(1994).
[30] Browell E V, Ismail S. First lidar measurements of water vapor and aerosols from a high-altitude aircraft[C], ThA4(1995).
[31] Ertel K, Linné H, Bösenberg J. Injection-seeded pulsed Ti: Sapphire laser with novel stabilization scheme and capability of dual-wavelength operation[J]. Applied Optics, 44, 5120-5126(2005).
[32] Przybylski M, Otto B, Gerhardt H. Spectral purity of pulsed dye lasers[J]. Applied Physics B, 49, 201-203(1989).
[33] Hänsch T W. Repetitively pulsed tunable dye laser for high resolution spectroscopy[J]. Applied Optics, 11, 895-898(1972).
[34] Bruneau D, Cazeneuve H, Loth C et al. Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement[J]. Applied Optics, 30, 3930-3937(1991).
[35] Bruneau D, Quaglia P, Flamant C et al. Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description[J]. Applied Optics, 40, 3450-3461(2001).
[36] Wulfmeyer V. Ground-based differential absorption lidar for water-vapor and temperature profiling: Development and specifications of a high-performance laser transmitter[J]. Applied Optics, 37, 3804(1998).
[37] Wagner G, Behrendt A, Wulfmeyer V et al. High-power Ti: Sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar[J]. Applied Optics, 52, 2454-2469(2013).
[38] Poberaj G, Fix A, Assion A et al. Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: System description and assessment of accuracy[J]. Applied Physics B, 75, 165-172(2002).
[39] Wagner G A, Plusquellic D F. Multi-frequency differential absorption LIDAR system for remote sensing of CO2 and H2O near 1.6 µm[J]. Optics Express, 26, 19420-19434(2018).
[40] Hamperl J, Capitaine C, Dherbecourt J B et al. Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: Sensitivity analysis with respect to regional atmospheric variability[J]. Atmospheric Measurement Techniques, 14, 6675-6693(2021).
[41] Hamperl J, Dherbecourt J B, Raybaut M et al. Range-resolved detection of boundary layer stable water vapor isotopologues using a ground-based 1.98 µm differential absorption LIDAR[J]. Optics Express, 30, 47199-47215(2022).
[42] Carroll B J, Nehrir A R, Kooi S A et al. Differential absorption lidar measurements of water vapor by the high altitude lidar observatory (HALO): Retrieval framework and first results[J]. Atmospheric Measurement Techniques, 15, 605-626(2022).
[43] Carroll B J, Nehrir A R, Barton-Grimley R A et al. Differential absorption lidar (DIAL) for profiling water vapor within and above the PBL[C](2020).
[44] Repasky K S, Nehrir A R, Hawthorne J T et al. Extending the continuous tuning range of an external-cavity diode laser[J]. Applied Optics, 45, 9013-9020(2006).
[45] Nehrir A R, Repasky K S, Carlsten J L et al. Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL)[J]. Journal of Atmospheric and Oceanic Technology, 26, 733-745(2009).
[46] Nehrir A R, Repasky K S, Carlsten J L. Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere[J]. Journal of Atmospheric and Oceanic Technology, 28, 131-147(2011).
[47] Spuler S M, Repasky K S, Morley B et al. Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor[J]. Atmospheric Measurement Techniques, 8, 1073-1087(2015).
[48] Spuler S, Bernatsky T, Bunn C et al. A micro-pulse differential absorption lidar test network[J]. EPJ Web of Conferences, 237, 05001(2020).
[49] Spuler S M, Hayman M, Stillwell R A et al. MicroPulse DIAL (MPD)–a diode-laser-based lidar architecture for quantitative atmospheric profiling[J]. Atmospheric Measurement Techniques, 14, 4593-4616(2021).
[50] Kay J, Weckwerth T M, Lee W C et al. An OSSE study of the impact of micropulse differential absorption lidar (MPD) water vapor profiles on convective weather forecasting[J]. Monthly Weather Review, 150, 2787-2811.
[51] Baker P W. Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar[J]. Applied Optics, 22, 2257(1983).
[52] Imaki M, Tanaka H, Hirosawa K et al. Demonstration of the 1.53-µm coherent DIAL for simultaneous profiling of water vapor density and wind speed[J]. Optics Express, 28, 27078-27096(2020).
[53] Iwai H, Aoki M. Evaluation of a coherent 2-µm differential absorption lidar for water vapor and radial wind velocity measurements[J]. Optics Express, 31, 13817-13836(2023).
[54] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).
[55] Wang Y T, Jiang G S, Li L L et al. Development review of optical gas absorption cell[J]. Journal of Atmospheric and Environmental Optics, 18, 401-419(2023).
[56] Hansch T W, Couillaud B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity[J]. Optics Communications, 35, 441-444(1980).
[57] Chen C S, Wang F, Liu S H et al. Review of frequency stabilization technology of semiconductor laser[J]. Chinese Journal of Quantum Electronics, 27, 513-521(2010).
[58] Bjorklund G C, Levenson M D, Lenth W et al. Frequency modulation (FM) spectroscopy: Theory of lineshapes and signal-to-noise analysis[J]. Applied Physics B, 32, 145-152(1983).
[59] Gawlik W, Zachorowski J. Stabilization of diode-laser frequency to atomic transitions[J]. Optica Applicata, 34, 607(2004).
[60] Koch G J, Petros M, Yu J et al. Precise wavelength control of a single-frequency pulsed Ho:Tm:YLF laser[J]. Applied Optics, 41, 1718-1721(2002).
[61] Numata K, Chen J R, Wu S T et al. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide[J]. Applied Optics, 50, 1047-1056(2011).
[62] Koch G J, Beyon J Y, Gibert F et al. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: Design and application to atmospheric measurements[J]. Applied Optics, 47, 944-956(2008).
[63] Koch G J, Barnes B W, Petros M et al. Coherent differential absorption lidar measurements of CO2[J]. Applied Optics, 43, 5092-5099(2004).
[64] Dinovitser A, Hamilton M W, Vincent R A. Stabilized master laser system for differential absorption lidar[J]. Applied Optics, 49, 3274-3281(2010).
[65] Koch G J, Dharamsi A N, Fitzgerald C M et al. Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide[J]. Applied Optics, 39, 3664-3669(2000).
[66] Machol J L, Ayers T, Schwenz K T et al. Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor[J]. Applied Optics, 43, 3110-3121(2004).
[67] Fix A, Ehret G, Löhring J et al. Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm[J]. Applied Physics B, 102, 905-915(2011).
[68] Xie J D, Yan L P, Chen B Y et al. Automatic offset-frequency locking of external cavity diode laser in wide wavelength range[J]. Optics and Precision Engineering, 29, 211-219(2021).
Get Citation
Copy Citation Text
Simin ZHANG, Jian HUANG, Dongfeng SHI, Kee YUAN, Shunxing HU. Research progress of water vapor differential absorption lidar technique[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(3): 263
Category: "Advanced technology of lidar and its application in atmospheric environment" Albun
Received: Nov. 13, 2024
Accepted: --
Published Online: Jun. 9, 2025
The Author Email: Shunxing HU (sxhu@aiofm.ac.cn)