Laser & Optoelectronics Progress, Volume. 51, Issue 12, 122401(2014)
Controlling Light Based on Metal Slit Array Structure Filling in Liquid Crystal
[1] [1] William L B, Alain D, Thomas W T. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
[2] [2] Wang Y, Wang J, Gao S, et al.. Two-way directional plasmonic excitation with two unsymmetrical metallic slits[J]. Appl Phys Express, 2013, 6(2): 022003.
[3] [3] Wang J, Wang Y, Zhang X, et al.. Splitting and unidirectional excitation of surface plasmon polaritons by two uniform metallic nanoslits with a nanocavity antenna[J]. Journal Modern Optics, 2010, 57(17): 1630-1634.
[4] [4] Chen Xinlin, Xiao Guangzong, Zhang Bin, et al.. Influences of the probe beam convergence on performance of surface plasmon resonance sensor[J]. Acta Optica Sinica, 2013, 40(10): 1014001.
[5] [5] Ren Mengxin, Xu Jingjun. Surface plasmon polariton enhanced nonlinearity and applications[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080002.
[7] [7] Ebbesen T W, Lezec H J, Ghaemi H F, et al.. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature, 1998, 391(6668): 667-669.
[8] [8] Ghaemi H F, Thio T, Grupp D E, et al.. Surface plasmons enhance optical transmission through subwavelength holes [J]. Phys Rev B, 1998, 58(11): 6779-6782.
[9] [9] Martin M L, Garcia V F J, Lezec H J, et al.. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Phys Rev Lett, 2001, 86(6): 1114-1117.
[10] [10] Takakura Y. Optical resonance in a narrow slit in a thick metallic screen[J]. Phys Rev Lett, 2001, 86(24): 5601-5603.
[11] [11] Lezec H J, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Opt Express, 2004, 12(16): 3629-3651.
[12] [12] Sun Z J, Kim H K. Refractive transmission of light and beam shaping with metallic nano-optic lenses[J]. Appl Phys Lett, 2004, 85(4): 642-644.
[13] [13] Shi H F, Wang C T, Du C L, et al.. Beam manipulating by metallic nanoslits with variant widths[J]. Opt Express, 2005, 13(18): 6815-6820.
[14] [14] Sun Z J. Beam splitting with a modified metallic nano-optic lens[J]. Appl Phy Lett, 2006, 89(26): 261119.
[15] [15] Min C J, Wang P, Jiao X J, et al.. Beam manipulating by metallic nano-optic lens containing nonlinear media[J]. Opt Express, 2007, 15(15): 9541-9546.
[16] [16] Vincenti M A, D′ Orazio A, Buncick M, et al.. Beam steering from resonant subwavelength slits filled with a nonlinear material[J]. J Opt Soc Am B, 2009, 26(2): 301-307.
[17] [17] Wang B, Wu X, Zhang Y. Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays[J]. Plasmonics, 2013, 8: 1535-1541.
[18] [18] Verslegers L, Catrysse P B, Yu Z, et al.. Planar lenses based on nano-scale slit arrays in a metallic film[J]. Nano Lett, 2008, 9(1): 235-238.
[19] [19] Chen Q, Cumming D R S. Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film[J]. Opt Express, 2010, 18(14): 14788-14793.
[20] [20] Pan L, Park Y, Xiong Y, et al.. Maskless plasmonic lithography at 22 nm resolution[J]. Scientific Rep, 2011, 1: 175.
[21] [21] Gao Y, Liu J, Guo K, et al.. A side-illuminated plasmonic planar lens[J]. Opt Express, 2014, 22(1): 699-706.
[22] [22] Kim T J, Thio T, Ebbesen T W, et al.. Control of optical transmission through metals perforated with subwavelength hole arrays[J]. Opt Lett, 1999, 24(4): 256-258.
[23] [23] Strelniker Y M. Control of extraordinary light transmission through perforated metal films using liquid crystals[J]. Eur Phys J B, 2006, 52(1): 1-7.
[24] [24] Pan C L, Hsieh C F, Pan R P, et al.. Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal[J]. Opt Express, 2005, 13(11): 3921-3930.
[25] [25] Yang F Z, Sambles J R. Microwave liquid crystal wavelength selector[J]. Appl Phy Lett, 2001, 79(22): 3717-3719.
[26] [26] Fong K Y, Hui P M. Controlling enhanced transmission through metallic gratings with subwavelength slits by anisotropic waveguide resonance[J]. Appl Phy Lett, 2007, 91(17): 171101.
[27] [27] Jubkins J B, Ziolkowski R W. Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings[J]. J Opt Soc Am A, 1995, 12(9): 1974-1983.
Get Citation
Copy Citation Text
Wang Jicheng, Liang Xiuye, Xia Xiushan, Tang Baojie, Song Ci, Qu Shinian. Controlling Light Based on Metal Slit Array Structure Filling in Liquid Crystal[J]. Laser & Optoelectronics Progress, 2014, 51(12): 122401
Category: Optics at Surfaces
Received: May. 12, 2014
Accepted: --
Published Online: Oct. 28, 2014
The Author Email: Wang Jicheng (jcwang@jiangnan.edu.cn)