Laser & Optoelectronics Progress, Volume. 51, Issue 12, 122401(2014)

Controlling Light Based on Metal Slit Array Structure Filling in Liquid Crystal

Wang Jicheng*, Liang Xiuye, Xia Xiushan, Tang Baojie, Song Ci, and Qu Shinian
Author Affiliations
  • [in Chinese]
  • show less
    References(27)

    [1] [1] William L B, Alain D, Thomas W T. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

    [2] [2] Wang Y, Wang J, Gao S, et al.. Two-way directional plasmonic excitation with two unsymmetrical metallic slits[J]. Appl Phys Express, 2013, 6(2): 022003.

    [3] [3] Wang J, Wang Y, Zhang X, et al.. Splitting and unidirectional excitation of surface plasmon polaritons by two uniform metallic nanoslits with a nanocavity antenna[J]. Journal Modern Optics, 2010, 57(17): 1630-1634.

    [4] [4] Chen Xinlin, Xiao Guangzong, Zhang Bin, et al.. Influences of the probe beam convergence on performance of surface plasmon resonance sensor[J]. Acta Optica Sinica, 2013, 40(10): 1014001.

    [5] [5] Ren Mengxin, Xu Jingjun. Surface plasmon polariton enhanced nonlinearity and applications[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080002.

    [7] [7] Ebbesen T W, Lezec H J, Ghaemi H F, et al.. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature, 1998, 391(6668): 667-669.

    [8] [8] Ghaemi H F, Thio T, Grupp D E, et al.. Surface plasmons enhance optical transmission through subwavelength holes [J]. Phys Rev B, 1998, 58(11): 6779-6782.

    [9] [9] Martin M L, Garcia V F J, Lezec H J, et al.. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Phys Rev Lett, 2001, 86(6): 1114-1117.

    [10] [10] Takakura Y. Optical resonance in a narrow slit in a thick metallic screen[J]. Phys Rev Lett, 2001, 86(24): 5601-5603.

    [11] [11] Lezec H J, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Opt Express, 2004, 12(16): 3629-3651.

    [12] [12] Sun Z J, Kim H K. Refractive transmission of light and beam shaping with metallic nano-optic lenses[J]. Appl Phys Lett, 2004, 85(4): 642-644.

    [13] [13] Shi H F, Wang C T, Du C L, et al.. Beam manipulating by metallic nanoslits with variant widths[J]. Opt Express, 2005, 13(18): 6815-6820.

    [14] [14] Sun Z J. Beam splitting with a modified metallic nano-optic lens[J]. Appl Phy Lett, 2006, 89(26): 261119.

    [15] [15] Min C J, Wang P, Jiao X J, et al.. Beam manipulating by metallic nano-optic lens containing nonlinear media[J]. Opt Express, 2007, 15(15): 9541-9546.

    [16] [16] Vincenti M A, D′ Orazio A, Buncick M, et al.. Beam steering from resonant subwavelength slits filled with a nonlinear material[J]. J Opt Soc Am B, 2009, 26(2): 301-307.

    [17] [17] Wang B, Wu X, Zhang Y. Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays[J]. Plasmonics, 2013, 8: 1535-1541.

    [18] [18] Verslegers L, Catrysse P B, Yu Z, et al.. Planar lenses based on nano-scale slit arrays in a metallic film[J]. Nano Lett, 2008, 9(1): 235-238.

    [19] [19] Chen Q, Cumming D R S. Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film[J]. Opt Express, 2010, 18(14): 14788-14793.

    [20] [20] Pan L, Park Y, Xiong Y, et al.. Maskless plasmonic lithography at 22 nm resolution[J]. Scientific Rep, 2011, 1: 175.

    [21] [21] Gao Y, Liu J, Guo K, et al.. A side-illuminated plasmonic planar lens[J]. Opt Express, 2014, 22(1): 699-706.

    [22] [22] Kim T J, Thio T, Ebbesen T W, et al.. Control of optical transmission through metals perforated with subwavelength hole arrays[J]. Opt Lett, 1999, 24(4): 256-258.

    [23] [23] Strelniker Y M. Control of extraordinary light transmission through perforated metal films using liquid crystals[J]. Eur Phys J B, 2006, 52(1): 1-7.

    [24] [24] Pan C L, Hsieh C F, Pan R P, et al.. Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal[J]. Opt Express, 2005, 13(11): 3921-3930.

    [25] [25] Yang F Z, Sambles J R. Microwave liquid crystal wavelength selector[J]. Appl Phy Lett, 2001, 79(22): 3717-3719.

    [26] [26] Fong K Y, Hui P M. Controlling enhanced transmission through metallic gratings with subwavelength slits by anisotropic waveguide resonance[J]. Appl Phy Lett, 2007, 91(17): 171101.

    [27] [27] Jubkins J B, Ziolkowski R W. Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings[J]. J Opt Soc Am A, 1995, 12(9): 1974-1983.

    CLP Journals

    [1] Liu Yan, Fan Fei, Chen Sai, Yang Lei, Chen Meng, Deng Decai, Wang Xianghui, Chang Shengjiang. Terahertz Optical Properties of Nematic Liquid Crystals Depended on Different External Fields[J]. Acta Optica Sinica, 2016, 36(2): 226001

    Tools

    Get Citation

    Copy Citation Text

    Wang Jicheng, Liang Xiuye, Xia Xiushan, Tang Baojie, Song Ci, Qu Shinian. Controlling Light Based on Metal Slit Array Structure Filling in Liquid Crystal[J]. Laser & Optoelectronics Progress, 2014, 51(12): 122401

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: May. 12, 2014

    Accepted: --

    Published Online: Oct. 28, 2014

    The Author Email: Wang Jicheng (jcwang@jiangnan.edu.cn)

    DOI:10.3788/lop51.122401

    Topics