Infrared and Laser Engineering, Volume. 53, Issue 3, 20230547(2024)

Advances in ultraviolet polarization detection for space astronomy

Ruiyan Shan, Lianqing Dong, Kang Li, Muyao Zhang, Guoxian Zheng, Zhuo Zhang, Lixin Yang, and Junjie Shao
Author Affiliations
  • Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • show less
    Figures & Tables(15)
    Reflectance curve of metal film in UV band
    Comparison of metal + protective coating UV reflectance
    Reflectance curve of optical film in EUV band[64]
    Working principle diagram of polarization system with different phase modulation methods
    Rotating 3-mirror phase modulator
    Schematic of polarization detector
    (a) CLASP spectroscopy+polarization double channels system[13]; (b) SUNRISE III-SUSI spectropolarimeter single channel system[46]
    Schematic diagram of δ-doped detector
    Comparison of quantum efficiency in the UV band for different types of detectors
    • Table 1. Typical space astronomy UV polarization loads

      View table
      View in Article

      Table 1. Typical space astronomy UV polarization loads

      MissionMaincountryLaunchtimeInstrumentTarget
      Interkosmos 16Sweden1976UVSPVUV linear polarization in Solar transition zone, etc.[8, 35]
      SMMUSA1980UVSPSolar flares, solar active regions, solar corona, etc.[3637]
      SUMIUSA2012SUMIChromosphere, solar transition region magnetic field, etc.[19]
      CLASPJapan2015CLASPUpper solar chromosphere, transition region, etc.[13, 15]
      CLASP-2Japan2019CLASPUpper solar chromosphere, transition region, etc.[38]
      CLASP-2.1Japan2021CLASPUpper solar chromosphere, transition region, etc.[38]
      Pioneer Venus OrbiterUSA1978OCPPVenus cloud layers, physical characteristics of aerosol particles in the atmosphere, and vertical distribution of aerosols, etc.[39]
      Hubble telescopeUSA1990FOSActive galaxies, quasars, and planetary nebulae, etc.[4043]
      ASTRO-1USA1990WUPPEInterstellar dust, hot stars, material in the solar system, active galaxies, etc.[44]
      ASTRO-2USA1995WUPPEInterstellar dust, hot stars, material in the solar system, active galaxies, etc.[44]
      WISPUSA1997WISPDiffuse nebula, dust nebula, Crab Nebula , etc.[1, 45]
      CUPIDUSAUnknownCUPIDCosmic background , etc.[1]
      FUSPUSAUnknownFUSPHot star systems, circumstellar disks , etc.[1]
      SUNRISE IIIGermanyPendingSUSISolar atmosphere, etc.[46]
      ARAGOEuropeUnder planningARAGOStellar-planetary interactions, etc.[4748]
      LUVOIRUSAUnder planningPOLLUXCircumstellar disk, interstellar magnetic fields, etc.[4952]
      SolmeXEuropeUnder planningEIP; SUSP;ChroME; CUSPThe structure of the solar outer atmosphere magnetic field, magnetic field variations, and magnetic field-derived effects, etc.[53]
      PolstarUSAUnder planningPolstarCircumstellar disk, interstellar magnetic fields, etc.[54-55]
    • Table 2. Parameters of typical space astronomy UV polarization load

      View table
      View in Article

      Table 2. Parameters of typical space astronomy UV polarization load

      Parameter instrumentInstrument typeWavelength/nmSpectral resolution/nmStokes parameterPolarimetry precision
      Interkosmos 16Spectro-polarimeter120-1503.9I Q U10−2
      SMM-UVSPSpectro-polarimeter115-3600.002-0.004I V10−2
      SUMISpectro-polarimeterC IV(155)Mg II(280)0.05@ C IV0.08@ Mg III Q U V10−3
      CLASPSpectro-polarimeterLy-α(121.6)0.01I Q U10−3
      CLASP2/2.1Spectro-polarimeterMg II(280)0.01I Q U V10−3
      Pioneer Venus Orbiter-OCPPPhoto-polarimeter270, 365~18I Q U10−3
      HST-FOSSpectro-polarimeter115-850>0.25I Q U V10−2
      ASTRO1/2-WUPPESpectro-polarimeter135-3300.6I Q U V10−3
      WISPPhoto-polarimeter135-26040I Q U-
      CUPIDPhoto-polarimeter118-16120I Q U10−2
      FUSPSpectro-polarimeter105-1500.07I Q U10−3
      SUNRISE III-SUSISpectro-polarimeter300-4100.001I Q U V10−3
      ARAGOSpectro-polarimeter119-888>0.009I Q U V-
      LUVOIR-POLLUXSpectro-polarimeter90-4000.002I Q U V10−4
      SolmeX-CUSPSpectro-polarimeter95-1250.009I Q U10−2
      SolmeX-EIPPhoto-polarimeterFe X(17.4)0.35I Q U10−3
      SolmeX-SUSPSpectro-polarimeter115-1550.0066I Q U V10−3
      SolmeX-ChroMESpectro-polarimeterMg II(279)0.005I Q U V10−3
      MIDEX-PolstarSpectro-polarimeter122-320>0.005I Q U V10−3
    • Table 3. Typical spectral range of space astrophysical UV polarization payloads and key components

      View table
      View in Article

      Table 3. Typical spectral range of space astrophysical UV polarization payloads and key components

      Parameter instrumentWavelength/nmUV coatingDetector
      Interkosmos 16120-150Al+MgF2AuPMT
      SMM-UVSP115-360Al+MgF2PMT
      SUMIC IV(155)Mg II(280)HfO2/SiO2/MgF2/LaF3Dielectric coatingBICCD
      CLASPLy-α(121.6)Al+MgF2Frame-transfer CCD
      CLASP2/2.1Mg II(280)Al+MgF2CCD
      Pioneer Venus Orbiter-OCPP270, 365SiO2/MgF2+AlUV-enhanced silicon photodiode
      HST-FOS115-850Al+Al2 O3Digicon photon detector
      ASTRO1/2-WUPPE135-330Al+MgF2Reticon photodiode array
      WISP135-260Al+MgF2Thinned CCD
      CUPID118-161Al+MgF2Thinned CCD
      FUSP105-150Al+LiFThinned CCD
      SUNRISE III-SUSI300-410AlBICCD
      ARAGO119-888Al+MgF2δ-CMOS
      LUVOIR-POLLUX90-400Al+MgF2+SiCδ-CCD
      SolmeX-CUSP95-125-ICCD
      SolmeX-EIPFe X(17.4)Al+B4 C+MoBTCCD
      SolmeX-SUSP115-155-ICMOS
      SolmeX-ChroMEMg II(279)--
      MIDEX-Polstar122-320Al +MgF2CCD
    • Table 4. Advantages and disadvantages of common polarization modulation methods

      View table
      View in Article

      Table 4. Advantages and disadvantages of common polarization modulation methods

      Polarization modulationModulation deviceAdvantagesDisadvantages
      MechanicalModulationRWPBroader workingspectral range, suitable for most UV regime; Stable in timeMoving parts increase mass, power consumption and vibrations; Modulation frequency is mechanically limited by the retarder rotating speed
      Electro-optic modulationLCVR, FLC, DFLCHigh modulationfrequency; Large aperture; Low power consumptionLimited in-orbit application;Not suitable for most UV regime
      Acousto-optic modulationPEMBroader workingspectral range(VUV-IR)No full-Stokes modulator has been developed; Small aperture
      ReflectivemodulationBrewster angle reflectorsSuitable for FUV/EUV regimeComplex structure, hard to install; large weight and volume
    • Table 5. Commonly used polarizing beam splitters in the UV band

      View table
      View in Article

      Table 5. Commonly used polarizing beam splitters in the UV band

      DeviceDiscriptionWorking diagramApplication
      Beam splitter cubeTwo beams output at a large angle and imagedin two separate detectorsSUNRISE III-SUSI, SolmeX-ChroME
      Wollaston prismOutput beams are refracted at nearly opposite anglesHST-FOS, ASTRO1/2-WUPPE, ARAGO, LUVOIR-POLLUX(MUV/NUV), MIDEX-polstar
      Double Wollaston prismTwo Wollaston prisms are combined, the first one acts as beam splitter while the second one produces two parallelbeams at the outputSUMI, Pioneer venus orbiter-OCPP
      Brewster planeBeamsplitting is accomplished by two reflections on twoMgF2 birefringent plates placed at the Brewster angleInterkosmos 16, SMM-UVSP, SolmeX-SUSP, LUVOIR-POLLUX(FUV), CLASP
      Wire-grid polarizerBy employing a structure with fine metal grids, selectively allow light of specific orientations to pass throughCLASP2/2.1, SolmeX-EIP
    • Table 6. Advantages and disadvantages of different solid UV detectors

      View table
      View in Article

      Table 6. Advantages and disadvantages of different solid UV detectors

      DeviceAdvantagesDisadvantages
      EMCCDHigh sensitivity; low noise; high frame rate; high dynamic rangeHigh cost; limited dynamic range compared to CCD and sCMOS; limited lifespan; limited resolution
      sCMOSHigh sensitivity; high frame rate; high dynamic range; large FOVHigh cost; limited lifespan; limited resolution; sensitivity to cosmic rays, leading to potential image artifacts or data loss
      CCDHigh sensitivity; high dynamic range; low noiseLow readout speed; high power consumption; high cost; limited resolution
      CMOSLow power consumption; low cost; high frame rate; high resolution; large FOVLow sensitivity; low dynamic range; high noise
    Tools

    Get Citation

    Copy Citation Text

    Ruiyan Shan, Lianqing Dong, Kang Li, Muyao Zhang, Guoxian Zheng, Zhuo Zhang, Lixin Yang, Junjie Shao. Advances in ultraviolet polarization detection for space astronomy[J]. Infrared and Laser Engineering, 2024, 53(3): 20230547

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Space optics

    Received: Sep. 22, 2023

    Accepted: --

    Published Online: Jun. 21, 2024

    The Author Email:

    DOI:10.3788/IRLA20230547

    Topics