Chinese Journal of Lasers, Volume. 47, Issue 7, 701007(2020)

Progress in Quantum Cascade Lasers

Liu Fengqi1,2、*, Zhang Jinchuan1, Liu Junqi1,2, Zhuo Ning1, Wang Lijun1,2, Liu Shuman1,2, Zhai Shenqiang1, Liang Ping1, Hu Ying1, and Wang Zhanguo1,2
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors,Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(55)

    [1] Kazarinov R F, Suris R A. Possibility of the amplification of electromagnetic waves in a semiconductor[J]. Soviet Physics Semiconductors, 5, 707-709(1971).

    [2] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [3] Benveniste E, Vasanelli A, Delteil A et al. Influence of the material parameters on quantum cascade devices[J]. Applied Physics Letters, 93, 131108(2008).

    [4] Roberts J S, Green R P, Wilson L R et al. Quantum cascade lasers grown by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 82, 4221-4223(2003).

    [5] Faist J, Beck M, Aellen T et al. Quantum-cascade lasers based on a bound-to-continuum transition[J]. Applied Physics Letters, 78, 147-149(2001).

    [6] Hofstetter D, Beck M, Aellen T et al. High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm[J]. Applied Physics Letters, 78, 396-398(2001).

    [7] Beck M, Hofstetter D, Aellen T et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 295, 301-305(2002).

    [8] Lyakh A, Maulini R, Tsekoun A et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Applied Physics Letters, 95, 141113(2009).

    [9] Liu F Q, Zhang Y Z, Zhang Q S et al. High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers[J]. Semiconductor Science and Technology, 15, L44-L46(2000).

    [10] Roberts J S, Green R P, Wilson L R et al. Quantum cascade lasers grown by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 82, 4221-4223(2003).

    [11] Semtsiv M P, Wienold M, Dressler S et al. Short-wavelength (λ≈3.05 μm) InP-based strain-compensated quantum-cascade laser[J]. Applied Physics Letters, 90, 051111(2007).

    [12] Bandyopadhyay N, Slivken S, Bai Y et al. High power, continuous wave, room temperature operation of λ ~3.4 μm and λ ~3.55 μm InP-based quantum cascade lasers[J]. Applied Physics Letters, 100, 212104(2012).

    [13] Revin D G, Cockburn J W, Steer M J et al. InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3μm[J]. Applied Physics Letters, 90, 021108(2007).

    [14] Cathabard O, Teissier R, Devenson J et al. Quantum cascade lasers emitting near 2.6 μm[J]. Applied Physics Letters, 96, 141110(2010).

    [15] Colombelli R, Capasso F, Gmachl C et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths[J]. Applied Physics Letters, 78, 2620-2622(2001).

    [16] Unterrainer K, Colombelli R, Gmachl C et al. Quantum cascade lasers with double metal-semiconductor waveguide resonators[J]. Applied Physics Letters, 80, 3060-3062(2002).

    [17] Ohtani K, Beck M, Faist J. Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 μm[J]. Applied Physics Letters, 105, 121115(2014).

    [18] Ohtani K, Beck M, Süess M J et al. Far-infrared quantum cascade lasers operating in the AlAs phonon reststrahlen band[J]. ACS Photonics, 3, 2280-2284(2016).

    [19] Chastanet D, Lollia G, Bousseksou A et al. Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ=19 μm) with metal-metal resonators[J]. Applied Physics Letters, 104, 021106(2014).

    [20] Baranov A N, Bahriz M, Teissier R. Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm[J]. Optics Express, 24, 18799-18806(2016).

    [21] Nguyen-Van H, Baranov A N, Loghmari Z et al. Quantum cascade lasers grown on silicon[J]. Scientific Reports, 8, 7206(2018).

    [22] Van H N, Loghmari Z, Philip H et al. Long wavelength (λ >17 μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature[J]. Photonics, 6, 31(2019).

    [23] Loghmari Z, Bahriz M, Meguekam A et al. Continuous wave operation of InAs-based quantum cascade lasers at 20 μm[J]. Applied Physics Letters, 115, 151101(2019).

    [24] Loghmari Z, Bahriz M, Meguekam A et al. InAs-based quantum cascade lasers emitting close to 25 μm[J]. Electronics Letters, 55, 144-146(2019).

    [25] Köhler R, Tredicucci A, Beltram F et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 417, 156-159(2002).

    [26] Scalari G, Ajili L, Faist J et al. Far-infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K[J]. Applied Physics Letters, 82, 3165-3167(2003).

    [27] Williams B S, Kumar S, Hu Q et al. High-power terahertz quantum-cascade lasers[J]. Electronics Letters, 42, 89-91(2006).

    [28] Williams B S. Terahertz quantum-cascade lasers[J]. Nature Photonics, 1, 517-525(2007).

    [29] Belkin M A, Capasso F, Belyanin A et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation[J]. Nature Photonics, 1, 288-292(2007).

    [30] Vijayraghavan K, Jiang Y F, Jang M et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers[J]. Nature Communications, 4, 2021(2013).

    [31] Razeghi M, Lu Q Y, Bandyopadhyay N et al. Quantum cascade lasers: from tool to product[J]. Optics Express, 23, 8462-8475(2015).

    [32] Figueiredo P, Suttinger M, Go R et al. Progress in high-power continuous-wave quantum cascade lasers[Invited[J]. Applied Optics, 56, H15-H23(2017).

    [33] Bai Y, Darvish S R, Slivken S et al. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power[J]. Applied Physics Letters, 92, 101105(2008).

    [34] Bai Y, Slivken S, Darvish S R et al. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency[J]. Applied Physics Letters, 93, 021103(2008).

    [35] Razeghi M, Slivken S, Bai Y B et al. High power quantum cascade lasers[J]. New Journal of Physics, 11, 125017(2009).

    [38] Bai Y, Bandyopadhyay N, Tsao S et al. Highly temperature insensitive quantum cascade lasers[J]. Applied Physics Letters, 97, 251104(2010).

    [39] Bai Y, Bandyopadhyay N, Tsao S et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 98, 181102(2011).

    [40] Zhuo N, Zhang J C, Wang F J et al. Room temperature continuous wave quantum dot cascade laser emitting at 7.2 μm[J]. Optics Express, 25, 13807-13815(2017).

    [41] Liu Y H, Zhang J C, Yan F L et al. Coupled ridge waveguide distributed feedback quantum cascade laser arrays[J]. Applied Physics Letters, 106, 142104(2015).

    [42] Zhao Y, Zhang J C, Cheng F M et al. Tapered quantum cascade laser arrays integrated with Talbot cavities[J]. Nanoscale Research Letters, 13, 1-7(2018).

    [44] Zhou W J, Lu Q Y, Wu D H et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm[J]. Optics Express, 27, 15776(2019).

    [45] Meng B, Wang Q J. Broadly tunable single-mode mid-infrared quantum cascade lasers[J]. Journal of Optics, 17, 023001(2015).

    [46] Lee B G, Belkin M A, Audet R et al. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy[J]. Applied Physics Letters, 91, 231101(2007).

    [47] Slivken S, Bandyopadhyay N, Tsao S et al. Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature[J]. Applied Physics Letters, 100, 261112(2012).

    [48] Maulini R, Beck M, Faist J et al. Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers[J]. Applied Physics Letters, 84, 1659-1661(2004).

    [49] Centeno R, Marchenko D, Mandon J et al. High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection[J]. Applied Physics Letters, 105, 261907(2014).

    [50] Lu Q Y, Bai Y, Bandyopadhyay N et al. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 98, 181106(2011).

    [51] Fujita K, Furuta S, Sugiyama A et al. High-performance quantum cascade lasers with wide electroluminescence (~600 cm -1), operating in continuous-wave above 100 ℃[J]. Applied Physics Letters, 98, 231102(2011).

    [53] Zhang J C, Liu F Q, Tan S et al. High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth[J]. Applied Physics Letters, 100, 112105(2012).

    [54] Liu C W, Zhang J C, Jia Z W et al. Low power consumption substrate-emitting DFB quantum cascade lasers[J]. Nanoscale Research Letters, 12, 517(2017).

    [55] Zhang J C, Yao D Y, Zhuo N et al. Directional collimation of substrate emitting quantum cascade laser by nanopores arrays[J]. Applied Physics Letters, 104, 052109(2014).

    Tools

    Get Citation

    Copy Citation Text

    Liu Fengqi, Zhang Jinchuan, Liu Junqi, Zhuo Ning, Wang Lijun, Liu Shuman, Zhai Shenqiang, Liang Ping, Hu Ying, Wang Zhanguo. Progress in Quantum Cascade Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Mar. 9, 2020

    Accepted: --

    Published Online: Jul. 10, 2020

    The Author Email: Fengqi Liu (fqliu@semi.ac.cn)

    DOI:10.3788/CJL202047.0701007

    Topics