Laser & Optoelectronics Progress, Volume. 56, Issue 23, 231007(2019)

Object Detection Model Based on Multi-Scale Feature Integration

Wanjun Liu, Feng Wang*, and Haicheng Qu
Author Affiliations
  • College of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
  • show less
    Figures & Tables(15)
    Flowchart of RF-YOLOv2 detection
    Object function change curve
    Residual block structure
    Feature pyramid network
    Flowchart of RF-YOLOv2
    Number of categories appearing on KITTI data set
    Loss graph for two models
    Precision-Recall curves of two models. (a)(c)(e) YOLOv2 model;(b)(d)(f) RF-YOLOv2 model
    Detection results. (a)(c)(e)(g)(i) Detection results of YOLOv2 model; (b)(d)(f)(h)(j) detection results of RF-YOLOv2 model
    • Table 1. RF-YOLOv2 network structure

      View table

      Table 1. RF-YOLOv2 network structure

      LayerblockTypeNumberof filtersSize /strideOutput
      Convolutional323×3416×416
      Maxpool2×2/2208×208
      Convolutional643×3208×208
      Convolutional321×1
      Convolutional643×3
      Residual208×208
      Maxpool2×2/2104×104
      Convolutional1283×3104×104
      Convolutional641×1
      Convolutional1283×3
      Residual104×104
      Maxpool2×2/252×52
      Convolutional2563×352×52
      Convolutional1281×1
      Convolutional2563×3
      Residual52×52
      Maxpool2×2/226×26
      Convolutional5123×326×26
      Convolutional2561×1
      Convolutional5123×3
      Residual26×26
      Maxpool2×2/213×13
      Convolutional10243×313×13
      Convolutional5121×1
      Convolutional10243×3
      Residual13×13
      AvgpoolGlobal3
      Softmax
    • Table 2. Comparison of accuracy and detection speed

      View table

      Table 2. Comparison of accuracy and detection speed

      ModelAccuracyofcar /%Accuracy ofpedestrian /%Accuracy ofcyclist /%Detectionspeed /(frame·s-1)
      YOLOv268.5644.2655.9546.4
      RF-YOLOv287.8852.9174.0530.3
      YOLOv389.3460.9383.9423.1
    • Table 3. Change process of recall rate and IOU

      View table

      Table 3. Change process of recall rate and IOU

      Number oftrainingRF-YOLOv2 modelYOLOv2 model
      Recallrate /%IOU /%Recallrate /%IOU /%
      1000050.3643.2948.1843.42
      2000055.4546.3453.1145.98
      3000061.4750.6555.8347.79
      4000064.9252.5654.1346.72
      5000065.8753.6357.9849.04
    • Table 4. Three sample detection results of car category

      View table

      Table 4. Three sample detection results of car category

      ModelAccuracy of easy sample /%Accuracy of moderate sample /%Accuracy of hard sample /%
      YOLOv270.5657.3250.44
      Faster-rcnn87.9079.1170.19
      RF-YOLOv291.0181.2672.41
    • Table 5. Three sample detection results of pedestrian category

      View table

      Table 5. Three sample detection results of pedestrian category

      ModelAccuracy of easy sample /%Accuracy of moderate sample /%Accuracy of hard sample /%
      YOLOv259.9749.0544.91
      Faster-rcnn78.3565.9161.19
      RF-YOLOv264.3557.0253.94
    • Table 6. Three sample detection results of cyclist category

      View table

      Table 6. Three sample detection results of cyclist category

      ModelAccuracy of easy sample /%Accuracy of moderate sample /%Accuracy of hard sample /%
      YOLOv256.4756.6853.02
      Faster-rcnn71.4162.8155.44
      RF-YOLOv279.7674.6872.41
    Tools

    Get Citation

    Copy Citation Text

    Wanjun Liu, Feng Wang, Haicheng Qu. Object Detection Model Based on Multi-Scale Feature Integration[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 10, 2019

    Accepted: Jun. 3, 2019

    Published Online: Nov. 27, 2019

    The Author Email: Feng Wang (838808390@qq.com)

    DOI:10.3788/LOP56.231007

    Topics