Piezoelectrics & Acoustooptics, Volume. 47, Issue 2, 376(2025)

Full-Spectrum Fourier Transform Photoacoustic Spectroscopy for Gas Sensing

CUI Jiajia1, YUAN Yupeng2, LI Shangzhi3, LIU Xiaoli1, DI Jin1, WANG Yaoxin1, CUI Ruyue1, XUE Jiyu1, DONG Lei1, and WU Hongpeng1
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • 2The 26th Institute of China Electronic Technology Group Corporation, Chongqing 400060, China
  • 3CETC Chips Technology Group Co., LTD., Chongqing 401332, China
  • show less
    References(21)

    [1] [1] SUCHNEK J, JANDA P, DOSTL M, et al. Photoacoustic spectroscopy with mica and graphene micro-mechanical levers for multicomponent analysis of acetic acid, acetone and methanol mixture[J]. Microchemical Journal, 2019, 144: 203-208.

    [2] [2] DUMITRAS D C, PETRUS M, BRATU A M, et al. Applications of near infrared photoacoustic spectroscopy for analysis of human respiration: A review[J]. Molecules, 2020, 25(7): 1728.

    [3] [3] WU Hongpeng, DONG Lei, ZHENG Huadan, et al. Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1 582 nm DFB laser[J]. Sensors and Actuators B: Chemical, 2015, 221: 666-672.

    [4] [4] WU Hongpeng, DONG Lei, ZHENG Huadan, et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring[J]. Nature Communications, 2017, 8: 15331.

    [5] [5] BAYRAKLI I. Tunable double-mode sensor for multi-gas detection based on the external-cavity diode laser[J]. Applied Optics, 2018, 57(15): 4039.

    [6] [6] KINJALK K, PACIOLLA F, SUN Bo, et al. Highly selective and sensitive detection of volatile organic compounds using long wavelength InAs-based quantum cascade lasers through quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics Reviews, 2024, 11(2): 021427.

    [7] [7] GUPTA D, CHEN Xing, WANG C C, et al. Stand-off chemical detection using photoacoustic sensing techniques: From single element to phase array[J]. Chemosensors, 2018, 6(1): 6.

    [8] [8] SHARMA R C, KUMAR S, GAUTAM S, et al. Photoacoustic sensor for trace detection of post-blast explosive and hazardous molecules[J]. Sensors and Actuators B: Chemical, 2017, 243: 59-63.

    [9] [9] BUSSE G, BULLEMER B. Use of the opto-acoustic effect for rapid scan Fourier spectroscopy[J]. Infrared Physics, 1978, 18(5/6): 631-634.

    [10] [10] ELBASUNEY S, EL-SHARKAWY Y H. Instant identification of explosive material: Laser induced photoacoustic spectroscopy versus Fourier transform infrared[J]. TrAC Trends in Analytical Chemistry, 2018, 108: 269-277.

    [11] [11] MIKKONEN T, LUOMA D, HAKULINEN H, et al. Detection of gaseous nerve agent simulants with broadband photoacoustic spectroscopy[J]. Journal of Hazardous Materials, 2022, 440: 129851.

    [12] [12] WU Ke, DU Changwen, MA Fei, et al. Rapid diagnosis of nitrogen status in rice based on Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS)[J]. Plant Methods, 2019, 15(1): 94.

    [13] [13] LIU Xiaoli, CUI Jiajia, FENG Chaofan, et al. Differential photoacoustic cell-based Fourier transform photoacoustic spectroscopy for background-free gas detection[J]. Chinese Optics Letters, 2024, 22(10): 53-57.

    [14] [14] UOTILA J, KAUPPINEN J. Fourier transform infrared measurement of solid-, liquid-, and gas-phase samples with a single photoacoustic cell[J]. Applied Spectroscopy, 2008, 62(6): 655-660.

    [15] [15] MAGALHES R F, HELENA DE BARROS A, TAKEMATSU M M, et al. FT-IR surface analysis of poly [(4-hydroxybenzoic)-ran-(2-hydroxy-6-naphthoic acid)] fiber – A short review[J]. Polymer Testing, 2020, 90: 106750.

    [16] [16] MIKKONEN T, AMIOT C, AALTO A, et al. Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum[J]. Optics Letters, 2018, 43(20): 5094-5097.

    [17] [17] SADIEK I, MIKKONEN T, VAINIO M, et al. Optical frequency comb photoacoustic spectroscopy[C]//Munich, Germany: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2019: 1.

    [18] [18] LIU Lixian, MANDELIS A, HUAN Huiting, et al. Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): A spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions[J]. Optics Letters, 2017, 42(7): 1424-1427.

    [19] [19] HIRSCHMANN C B, UOTILA J, OJALA S, et al. Fourier transform infrared photoacoustic multicomponent gas spectroscopy with optical cantilever detection[J]. Applied Spectroscopy, 2010, 64(3): 293-297.

    [20] [20] HIRSCHMANN C B, KOIVIKKO N S, RAITTILA J, et al. FT-IR-cPAS: new photoacoustic measurement technique for analysis of hot gases: a case study on VOCs[J]. Sensors, 2011, 11(5): 5270-5289.

    [21] [21] LIU Lixian, MANDELIS A, HUAN Huiting, et al. Step-scan T cell-based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants[J]. Applied Physics B, 2016, 122(10): 268.

    Tools

    Get Citation

    Copy Citation Text

    CUI Jiajia, YUAN Yupeng, LI Shangzhi, LIU Xiaoli, DI Jin, WANG Yaoxin, CUI Ruyue, XUE Jiyu, DONG Lei, WU Hongpeng. Full-Spectrum Fourier Transform Photoacoustic Spectroscopy for Gas Sensing[J]. Piezoelectrics & Acoustooptics, 2025, 47(2): 376

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 8, 2025

    Accepted: Jun. 17, 2025

    Published Online: Jun. 17, 2025

    The Author Email:

    DOI:10.11977/j.issn.1004-2474.2025.02.027

    Topics