Journal of Infrared and Millimeter Waves, Volume. 39, Issue 6, 735(2020)
[1] Kong H, Li G, Jin Z. Polarization-independent metamaterial absorber for terahertz frequency[J]. Tera- hertz Waves, 33, 649-656(2012).
[2] Grant J, Ma Y, Saha S. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 36, 3476(2011).
[3] Khuyen B X, Tung B S, Yoo Y J. Ultrathin metamaterial-based perfect absorbers for VHF and THz bands[J]. Current Applied Physics, 16, 1009-1014(2016).
[5] Sabah C, Dincer F, Karaaslan M. Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application[J]. Optics Communications, 322, 137-142(2014).
[6] Wang H, Prasad Sivan V, Mitchell A. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting[J]. Solar Energy Materials and Solar Cells, 137, 235-242(2015).
[7] Ma B, Liu S, Kong X. A novel wide-band tunable metamaterial absorber based on varactor diode/graphene[J]. Optik - International Journal for Light and Electron Optics, 127, 3039-3043(2016).
[8] He X, Zhong X, Lin F. Investigation of graphene assisted tunable terahertz metamaterials absorber[J]. Optical Materials Express, 6, 331(2016).
[9] Luu D H, Van Dung N, Hai P. Switchable and tunable metamaterial absorber in THz frequencies[J]. Journal of Science: Advanced Materials and Devices, 1, 65-68(2016).
[10] Pitchappa P, Manjappa M, Ho C P. Metamaterials: active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Advanced Optical Materials, 4, 540-540(2016).
[11] Xu Z, Gao R, Ding C. Photoexited switchable metamaterial absorber at terahertz frequencies[J]. Optics Communications, 344, 125-128(2015).
[12] Xu Z, Gao R, Ding C. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber[J]. Optical Materials, 42, 148-151(2015).
[14] Zhao X, Fan K, Zhang J. Optically tunable metamaterial perfect absorber on highly flexible substrate[J]. Sensors and Actuators A: Physical, 231, 74-80(2015).
[16] Zhang J, Wang G, Zhang B. Photo-excited broadband tunable terahertz metamaterial absorber[J]. Optical Materials, 54, 32-36(2016).
[17] Wang Y, Liu X, Wen C Z. Broadband tunable hybridized metamaterials absorber at terahertz regime[J]. Ferroelectrics, 528, 38-44(2018).
[18] Cheng Y, Gong R, Cheng Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves[J]. Optics Communications, 361, 41-46(2016).
[20] Song Y J, Sarabandi K. Equivalent circuit model for metamaterial-based electromagnetic band-gap isolator[J]. IEEE Antennas and Wireless Propagation Letters, 11, 1366-1369(2012).
[21] Qin B, Li Z, Hu F. Highly sensitive detection of carbendazim by using terahertz time-domain spectroscopy combined with metamaterial[J]. IEEE Transactions on Terahertz Science and Technology, 8, 149-154(2018).
[23] Jeppesen C, Mortensen N A, Kristensen A. Capacitance tuning of nanoscale split-ring resonators[J]. Applied Physics Letters, 95, 193108(2009).
[24] Zhu J, Han J, Tian Z. Thermal broadband tunable Terahertz metamaterials[J]. Optics Communications, 284, 3129-3133(2011).
[29] SHEN X P, CUI T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber[J]. Journal of Optics, 14, 114012(2012).
Get Citation
Copy Citation Text
Yan-Qun TONG, Shi-Yan WANG, Xiao-Xian SONG, Lei YANG, Jian-Quan YAO, Yun-Xia YE, Yun-Peng REN, Ya-Ting ZHANG, Shan-Shan XIN, Xu-Dong REN.
Category: Millimeter Wave and Terahertz Technology
Received: Feb. 5, 2020
Accepted: --
Published Online: Jan. 20, 2021
The Author Email: Yan-Qun TONG (tongyanqun@163.com), Xu-Dong REN (renxd@mail.ujs.edu.cn)