Photonics Research, Volume. 10, Issue 4, 974(2022)

Inverse design of invisibility cloaks using the optical theorem

Brian Slovick* and Josh Hellhake
Author Affiliations
  • Advanced Technology and Systems Division, SRI International, Menlo Park, California 94025, USA
  • show less
    References(52)

    [1] A. Devaney. Mathematical Foundations of Imaging, Tomography and Wavefield Inversion(2012).

    [2] D. Colton, R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory(2012).

    [3] M. Fiddy, R. Ritter. Introduction to Imaging from Scattered Fields(2014).

    [4] E. Wolf, T. Habashy. Invisible bodies and uniqueness of the inverse scattering problem. J. Mod. Opt., 40, 785-792(1993).

    [5] R. Rumpf, M. Fiddy, M. Testorf. Design of generalized invisible scatterers. Opt. Express, 15, 4735-4744(2007).

    [6] B. Hoenders. Existence of invisible nonscattering objects and nonradiating sources. J. Opt. Soc. Am. A, 14, 262-266(1997).

    [7] G. Gbur, E. Wolf. Nonradiating sources and other invisible objects. Progress in Optics, 45, 273-316(2003).

    [8] E. Knott, J. Schaeffer, M. Tulley. Radar Cross Section(2004).

    [9] D. Jenn. Radar and Laser Cross Section Engineering(2005).

    [10] H. Raut, V. Ganesh, A. Nair, S. Ramakrishna. Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci., 4, 3779-3804(2011).

    [11] S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, L. Chen. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R, 69, 1-35(2010).

    [12] A. Alù, N. Engheta. Cloaking a sensor. Phys. Rev. Lett., 102, 233901(2009).

    [13] F. Bilotti, S. Tricarico, F. Pierini, L. Vegni. Cloaking apertureless near-field scanning optical microscopy tips. Opt. Lett., 36, 211-213(2011).

    [14] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann. Cloaking a sensor via transformation optics. Phys. Rev. E, 83, 016603(2011).

    [15] X. Chen, G. Uhlmann. Cloaking a sensor for three-dimensional Maxwell’s equations: transformation optics approach. Opt. Express, 19, 20518-20530(2011).

    [16] P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, M. Brongersma. An invisible metal–semiconductor photodetector. Nat. Photonics, 6, 380-385(2012).

    [17] N. Zheludev, Y. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

    [18] J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, J. Smart. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics, 1, 176-179(2007).

    [19] H. Chen, C. Chan, P. Sheng. Transformation optics and metamaterials. Nat. Mater., 9, 387-396(2010).

    [20] J. Pendry, A. Aubry, D. Smith, S. Maier. Transformation optics and subwavelength control of light. Science, 337, 549-552(2012).

    [21] D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, D. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2012).

    [22] J. Valentine, J. Li, T. Zentgraf, G. Bartal, Z. Zhang. An optical cloak made of dielectrics. Nat. Mater., 8, 568-571(2009).

    [23] B. Kantè, D. Germain, A. de Lustrac. Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys. Rev. B, 80, 201104(2009).

    [24] J. Khurgin. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol., 10, 2-6(2015).

    [25] J. Li, J. Pendry. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett., 101, 203901(2008).

    [26] P. Chen, J. Soric, A. Alù. Invisibility and cloaking based on scattering cancellation. Adv. Mater., 24, OP281-OP304(2012).

    [27] C. Qiu, L. Hu, X. Xu, Y. Feng. Spherical cloaking with homogeneous isotropic multilayered structures. Phys. Rev. E, 79, 047602(2009).

    [28] Y. Huang, Y. Feng, T. Jiang. Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Opt. Express, 15, 11133-11141(2007).

    [29] B. Edwards, A. Alù, M. Silveirinha, N. Engheta. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett., 103, 153901(2009).

    [30] M. Silveirinha, A. Alù, N. Engheta. Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation. Phys. Rev. B, 78, 075107(2008).

    [31] A. Alù. Invisibility induced by a surface. Phys. Rev. B, 80, 245115(2009).

    [32] S. Liu, H. Xu, H. Zhang, T. Cui. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface. Opt. Express, 22, 13403-13417(2014).

    [33] F. Monticone, A. Alù. Invisibility exposed: physical bounds on passive cloaking. Optica, 3, 718-724(2016).

    [34] G. Labate, A. Alù, L. Matekovits. Surface-admittance equivalence principle for non-radiating and cloaking problems. Phys. Rev. A, 95, 063841(2017).

    [35] M. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep., 9, 1368(2019).

    [36] L. Su, A. Piggott, N. Sapra, J. Petykiewicz, J. Vuckovic. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photon., 5, 301-305(2018).

    [37] W. Jin, S. Molesky, Z. Lin, K. Fu, A. Rodriguez. Inverse design of compact multimode cavity couplers. Opt. Express, 26, 26713-26721(2018).

    [38] T. Hughes, M. Minkov, I. Williamson, S. Fan. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photon., 5, 4781-4787(2018).

    [39] D. Liu, Y. Tan, E. Khoram, Z. Yu. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photon., 5, 1365-1369(2018).

    [40] B. Slovick, E. Matlin. Poles of the scattering matrix: an inverse method for designing photonic resonators. Opt. Express, 28, 1845-1853(2020).

    [41] C. Sitawarin, W. Jin, Z. Lin, A. Rodriguez. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion. Photon. Res., 6, B82-B89(2018).

    [42] C. Sitawarin, W. Jin, Z. Lin, A. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [43] L. D. Donato, T. Isernia, G. Labate, L. Matekovits. Towards printable natural dielectric cloaks via inverse scattering techniques. Sci. Rep., 7, 1(2017).

    [44] A. Bondeson, Y. Yang, P. Weinerfelt. Shape optimization for radar cross sections by a gradient method. international journal for numerical methods in engineering. Int. J. Numer. Methods Eng., 61, 687-715(2004).

    [45] B. Chaudhury, S. Chaturvedi. Study and optimization of plasma-based radar cross section reduction using three-dimensional computations. IEEE Trans. Plasma Sci., 37, 2116-2127(2009).

    [46] L. Boya, R. Murray. Optical theorem in N dimensions. Phys. Rev. A, 50, 4397(1994).

    [47] L. Hovakimian. Optical theorem in N dimensions. Phys. Rev. A, 72, 064701(2005).

    [48] R. Potthast. Point Sources and Multipoles in Inverse Scattering Theory(2001).

    [49] L. Tsang, J. Kong, K. Ding. Scattering of Electromagnetic Waves: Theories and Applications(2004).

    [50] M. Mishchenko. Electromagnetic Scattering by Particles and Particle Groups: An Introduction(2014).

    [51] L. Ying. Sparsifying preconditioner for the Lippmann–Schwinger equation. Multiscale Modeling Sim., 13, 644-660(2015).

    [52] F. Liu, L. Ying. Sparsifying preconditioner for the time-harmonic Maxwell’s equations. J. Comput. Phys., 376, 913-923(2019).

    Tools

    Get Citation

    Copy Citation Text

    Brian Slovick, Josh Hellhake, "Inverse design of invisibility cloaks using the optical theorem," Photonics Res. 10, 974 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Dec. 9, 2021

    Accepted: Feb. 8, 2022

    Published Online: Apr. 26, 2022

    The Author Email: Brian Slovick (brian.slovick@sri.com)

    DOI:10.1364/PRJ.450937

    Topics