Photonics Research, Volume. 10, Issue 4, 974(2022)
Inverse design of invisibility cloaks using the optical theorem
[1] A. Devaney. Mathematical Foundations of Imaging, Tomography and Wavefield Inversion(2012).
[2] D. Colton, R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory(2012).
[3] M. Fiddy, R. Ritter. Introduction to Imaging from Scattered Fields(2014).
[4] E. Wolf, T. Habashy. Invisible bodies and uniqueness of the inverse scattering problem. J. Mod. Opt., 40, 785-792(1993).
[5] R. Rumpf, M. Fiddy, M. Testorf. Design of generalized invisible scatterers. Opt. Express, 15, 4735-4744(2007).
[6] B. Hoenders. Existence of invisible nonscattering objects and nonradiating sources. J. Opt. Soc. Am. A, 14, 262-266(1997).
[7] G. Gbur, E. Wolf. Nonradiating sources and other invisible objects. Progress in Optics, 45, 273-316(2003).
[8] E. Knott, J. Schaeffer, M. Tulley. Radar Cross Section(2004).
[9] D. Jenn. Radar and Laser Cross Section Engineering(2005).
[10] H. Raut, V. Ganesh, A. Nair, S. Ramakrishna. Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci., 4, 3779-3804(2011).
[11] S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, L. Chen. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R, 69, 1-35(2010).
[12] A. Alù, N. Engheta. Cloaking a sensor. Phys. Rev. Lett., 102, 233901(2009).
[13] F. Bilotti, S. Tricarico, F. Pierini, L. Vegni. Cloaking apertureless near-field scanning optical microscopy tips. Opt. Lett., 36, 211-213(2011).
[14] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann. Cloaking a sensor via transformation optics. Phys. Rev. E, 83, 016603(2011).
[15] X. Chen, G. Uhlmann. Cloaking a sensor for three-dimensional Maxwell’s equations: transformation optics approach. Opt. Express, 19, 20518-20530(2011).
[16] P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, M. Brongersma. An invisible metal–semiconductor photodetector. Nat. Photonics, 6, 380-385(2012).
[17] N. Zheludev, Y. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).
[18] J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, J. Smart. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics, 1, 176-179(2007).
[19] H. Chen, C. Chan, P. Sheng. Transformation optics and metamaterials. Nat. Mater., 9, 387-396(2010).
[20] J. Pendry, A. Aubry, D. Smith, S. Maier. Transformation optics and subwavelength control of light. Science, 337, 549-552(2012).
[21] D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, D. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2012).
[22] J. Valentine, J. Li, T. Zentgraf, G. Bartal, Z. Zhang. An optical cloak made of dielectrics. Nat. Mater., 8, 568-571(2009).
[23] B. Kantè, D. Germain, A. de Lustrac. Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phys. Rev. B, 80, 201104(2009).
[24] J. Khurgin. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol., 10, 2-6(2015).
[25] J. Li, J. Pendry. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett., 101, 203901(2008).
[26] P. Chen, J. Soric, A. Alù. Invisibility and cloaking based on scattering cancellation. Adv. Mater., 24, OP281-OP304(2012).
[27] C. Qiu, L. Hu, X. Xu, Y. Feng. Spherical cloaking with homogeneous isotropic multilayered structures. Phys. Rev. E, 79, 047602(2009).
[28] Y. Huang, Y. Feng, T. Jiang. Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Opt. Express, 15, 11133-11141(2007).
[29] B. Edwards, A. Alù, M. Silveirinha, N. Engheta. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett., 103, 153901(2009).
[30] M. Silveirinha, A. Alù, N. Engheta. Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation. Phys. Rev. B, 78, 075107(2008).
[31] A. Alù. Invisibility induced by a surface. Phys. Rev. B, 80, 245115(2009).
[32] S. Liu, H. Xu, H. Zhang, T. Cui. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface. Opt. Express, 22, 13403-13417(2014).
[33] F. Monticone, A. Alù. Invisibility exposed: physical bounds on passive cloaking. Optica, 3, 718-724(2016).
[34] G. Labate, A. Alù, L. Matekovits. Surface-admittance equivalence principle for non-radiating and cloaking problems. Phys. Rev. A, 95, 063841(2017).
[35] M. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep., 9, 1368(2019).
[36] L. Su, A. Piggott, N. Sapra, J. Petykiewicz, J. Vuckovic. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photon., 5, 301-305(2018).
[37] W. Jin, S. Molesky, Z. Lin, K. Fu, A. Rodriguez. Inverse design of compact multimode cavity couplers. Opt. Express, 26, 26713-26721(2018).
[38] T. Hughes, M. Minkov, I. Williamson, S. Fan. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photon., 5, 4781-4787(2018).
[39] D. Liu, Y. Tan, E. Khoram, Z. Yu. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photon., 5, 1365-1369(2018).
[40] B. Slovick, E. Matlin. Poles of the scattering matrix: an inverse method for designing photonic resonators. Opt. Express, 28, 1845-1853(2020).
[41] C. Sitawarin, W. Jin, Z. Lin, A. Rodriguez. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion. Photon. Res., 6, B82-B89(2018).
[42] C. Sitawarin, W. Jin, Z. Lin, A. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).
[43] L. D. Donato, T. Isernia, G. Labate, L. Matekovits. Towards printable natural dielectric cloaks via inverse scattering techniques. Sci. Rep., 7, 1(2017).
[44] A. Bondeson, Y. Yang, P. Weinerfelt. Shape optimization for radar cross sections by a gradient method. international journal for numerical methods in engineering. Int. J. Numer. Methods Eng., 61, 687-715(2004).
[45] B. Chaudhury, S. Chaturvedi. Study and optimization of plasma-based radar cross section reduction using three-dimensional computations. IEEE Trans. Plasma Sci., 37, 2116-2127(2009).
[46] L. Boya, R. Murray. Optical theorem in
[47] L. Hovakimian. Optical theorem in
[48] R. Potthast. Point Sources and Multipoles in Inverse Scattering Theory(2001).
[49] L. Tsang, J. Kong, K. Ding. Scattering of Electromagnetic Waves: Theories and Applications(2004).
[50] M. Mishchenko. Electromagnetic Scattering by Particles and Particle Groups: An Introduction(2014).
[51] L. Ying. Sparsifying preconditioner for the Lippmann–Schwinger equation. Multiscale Modeling Sim., 13, 644-660(2015).
[52] F. Liu, L. Ying. Sparsifying preconditioner for the time-harmonic Maxwell’s equations. J. Comput. Phys., 376, 913-923(2019).
Get Citation
Copy Citation Text
Brian Slovick, Josh Hellhake, "Inverse design of invisibility cloaks using the optical theorem," Photonics Res. 10, 974 (2022)
Category: Physical Optics
Received: Dec. 9, 2021
Accepted: Feb. 8, 2022
Published Online: Apr. 26, 2022
The Author Email: Brian Slovick (brian.slovick@sri.com)