Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1428008(2024)

Structure-Aware Multiscale Hybrid Network for Change Detection of Remote Sensing Images

Qi Liu1,2, Lin Cao2,3, Shu Tian3、*, Kangning Du3, Peiran Song3, and Yanan Guo3
Author Affiliations
  • 1School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology University, Beijing 100101, China
  • 2Key Laboratory of Optoelectronic Measurement Technology and Instrument, Ministry of Education, Beijing Information Science & Technology University, Beijing 100101, China
  • 3Key Laboratory of Information and Communication Systems, Ministry of Information Industry, Beijing Information Science & Technology University, Beijing 100101, China
  • show less
    Figures & Tables(12)
    Overall structure of the proposed change detection model
    Structure of global feature extraction module
    Structure of local feature extraction module
    Structure of feature equalization module
    Visualization results on CDD dataset
    Visualization results on GZ-CD dataset
    Visualization images of CDD dataset ablation experiments
    Visualization images of GZ-CD dataset ablation experiments
    Comparison of training convergence on different datasets. (a) CDD dataset; (b) GZ-CD dataset
    • Table 1. Compared experimental training parameter setting

      View table

      Table 1. Compared experimental training parameter setting

      ParameterFC-Siam-diffFC-Siam-concFC-EFEF-UNet++Siam-NestedUNetBITICIFNet
      CPUIntel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz (×40)
      GPUNVIDIA GeForce RTX 2080 Ti (×6)
      Memory12G (×6)
      FrameworkPyTorch 1.6PyTorch 1.6PyTorch 1.6TensorFlowPyTorch 1.4PyTorch 1.6PyTorch 1.9
      lr0.0010.0010.0010.00010.0010.00050.0005
      Epoch100100100100100100100
      Batchsize161616321688
    • Table 2. Comparison of experimental quantitative results

      View table

      Table 2. Comparison of experimental quantitative results

      ModelCDDGZ-CD
      PrecisionRecallF1OAPrecisionRecallF1OA
      FC-Siam-diff70.960.363.793.381.056.766.787.4
      FC-Siam-conc66.060.762.891.980.663.871.388.8
      FC-EF60.958.359.291.185.273.578.991.5
      EF-UNet++91.188.389.697.885.081.083.091.7
      Siam-NestedUNet92.490.891.598.186.183.384.496.8
      BIT97.095.296.398.486.575.280.896.7
      ICIFNet96.996.195.297.890.281.585.697.1
      MSCT97.198.697.899.192.682.187.197.5
    • Table 3. Results of ablation experiments

      View table

      Table 3. Results of ablation experiments

      MethodGFELFEFEMCDDGZ-CD
      PrecisionRecallF1OAPrecisionRecallF1OA
      MSCT-1×97.294.595.896.488.582.785.596.8
      MSCT-2×96.596.896.597.090.481.685.897.3
      MSCT-3×98.396.197.297.990.282.286.197.1
      MSCT97.198.697.899.192.682.187.197.5
    Tools

    Get Citation

    Copy Citation Text

    Qi Liu, Lin Cao, Shu Tian, Kangning Du, Peiran Song, Yanan Guo. Structure-Aware Multiscale Hybrid Network for Change Detection of Remote Sensing Images[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1428008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 12, 2024

    Accepted: Mar. 7, 2024

    Published Online: Jul. 8, 2024

    The Author Email: Shu Tian (shutian@bistu.edu.cn)

    DOI:10.3788/LOP240514

    CSTR:32186.14.LOP240514

    Topics