Infrared and Laser Engineering, Volume. 50, Issue 8, 20210352(2021)
Operation of femtosecond Kerr-lens mode-locked laser with all-normal dispersion at 2.4 μm (Invited)
[1] Pan Sunqiang, Hu Pengbin, Chen Zhemin, et al. Measurement of vapor hydrogen peroxide based on mid infrared absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 41, 1102-1106(2021).
[2] Hou Yue, Huang Kejin, Yu Guanyi, et al. Development on high precision CO2 isotope measurement system based on infrared TDLAS technology[J]. Infrared and Laser Engineering, 50, 20200083(2021).
[3] Xue Bin, Zhao Tuo, Wu Hanzhong, et al. Speed measurement using femtosecond optical frequency comb based on phase signal processing[J]. Infrared and Laser Engineering, 47, 0206002(2018).
[4] Mirov S B, Fedorov V V, Martyshkin D, et al. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 1601719(2015).
[5] Sorokina I T, Sorokin E. Femtosecond Cr2+-based lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 1601519(2015).
[6] Wang Yunpeng, Wang Fei, Zhang Dongxu. Optical properties of Cr2+: ZnSe single crystal grown under high temperature and high pressure.[J]. Chinese Optics, 8, 615-620(2015).
[7] Liu Changyou, Jie Wanqi, Zhang Binbin, et al. Growth and spectral properties of Cr2+: ZnSe crystals for mid-infrared lasers[J]. Journal of Synthetic Crystals, 40, 1382-1386(2011).
[8] Zhang Yuqin, Feng Guoying, Gao Xiang. Comparative study on spectral charateristics of Cr2+: ZnS and Fe2+: ZnS[J]. High Power Laser and Particle Beams, 26, 82-85(2014).
[9] Baumgartl M, Lecaplain C, Hideur A, et al. 66 W average power from a microjoule-class sub-100 fs fiber oscillator[J]. Optics Letters, 37, 1640-1642(2012).
[10] [10] Vodopyanov K L, Sokin E, Sokina I, et al. 4.45.4 µm frequency comb from a subharmonic OPGaAs OPO pumped by a femtosecond Cr: ZnSe laser[C]Advances in Optical Materials, Optical Society of America, 2011: AME2.
[11] Gordon A, Kartner F X. Scaling of keV HHG photon yield with drive wavelength[J]. Optics Express, 13, 2941-2947(2005).
[12] Zhang J W, Mak K F, Nagl N, et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1[J]. Light-Science & Applications, 7, 6(2018).
[13] Wang Q, Zhang J, Kessel A, et al. Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes[J]. Optics Letters, 44, 2566-2569(2019).
[14] [14] Sokina I T, Sokin E, Carrig T J. Femtosecond pulse generation from a SESAM modelocked Cr: ZnSe laser[C]Conference on Lasers ElectroOpticsQuantum Electronics Laser Science Conference Photonic Applications Systems Technologies, Optical Society of America, 2006: CMQ2.
[15] Cizmeciyan M N, Cankaya H, Kurt A, et al. Kerr-lens mode-locked femtosecond Cr2+: ZnSe laser at 2420 nm[J]. Optics Letters, 34, 3056-3058(2009).
[16] Zheng Li, Wang Huibo, Tian Wenlong, et al. LD-pumped high-repetition-rate all-solid-state femtosecond lasers (Invited)[J]. Infrared and Laser Engineering, 49, 20201069(2020).
[17] Sorokin E, Tolstik N, Schaffers K I, et al. Femtosecond SESAM-modelocked Cr:ZnS laser[J]. Optics Express, 20, 28947-28952(2012).
[18] [18] Slobodchikov E, Moulton P F. 1GWpeakpower, Cr: ZnSe laser[C]Laser Applications to Photonic Applications, Optical Society of America, 2011: PAPD10.
[19] [19] Tolstik N, Sokin E, Sokina I T, et al. Wattlevel Kerrlens modelocked Cr: ZnS laser at 2.4 μm[C]2013 Conference on Lasers ElectroOptics, Optical Society of America, 2013: CTh1H. 2.
[20] [20] Moskalev I S, Fedov V V, Mirov S B. Selfstarting Kerrmodelocked polycrystalline Cr2+: ZnSe laser[C]2008 Conference on Lasers ElectroOptics & Quantum Electronics Laser Science Conference, Optical Society of America, 2008: CFI3.
[21] Ilday F O, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 92, 4(2004).
[22] Renninger W H, Chong A, Wise F W. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 389-398(2012).
[23] [23] Sokina I T, Sokin E, Carrig T J, et al. A SESAM passively modelocked Cr: ZnS laser[C]Advanced SolidState Photonics, Optical Society of America, 2006: TuA4.
[24] [24] Vasilyev S, Moskalev I, Mirov M, et al. Kerrlens modelocked dle IR polycrystalline Cr: ZnS laser with a repetition rate 1.2 GHz[C]Lasers Congress 2016 (ASSL, LSC, LAC), Optical Society of America, 2016: AW1A. 2.
[25] Hu C, Zhu J, Wang Z, et al. Kerr-lens mode-locked polycrystalline Cr: ZnS femtosecond laser pumped by a monolithic Er: YAG laser[J]. Chinese Physics B, 26, 014206(2017).
[26] [26] Nagl N, Grobmeyer S, Potzlberger M, et al. Directly diodepumped fewopticalcycle Cr: ZnS laser at 800 mW of average power[C]Conference on Lasers ElectroOptics, Optical Society of America, 2020: SF3H.5.
[27] Vasilyev S, Moskalev I, Smolski V, et al. Kerr-lens mode-locked Cr: ZnS oscillator reaches the spectral span of an optical octave[J]. Optics Express, 29, 2458-2465(2021).
[28] Barh A, Heidrich J, Alaydin B O, et al. Watt- level and sub-100-fs self-starting mode-locked 2.4 μm Cr: ZnS oscillator enabled by GaSb-SESAMs[J]. Optics Express, 29, 5934-5946(2021).
[29] Magni V, Cerullo G, De Silvestri S. Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers[J]. Optics Communications, 101, 365-370(1993).
[30] Cerullo G, De Silvestri S, Magni V, et al. Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers[J]. Optics Letters, 19, 807-809(1994).
Get Citation
Copy Citation Text
Runyu Wang, Qing Wang. Operation of femtosecond Kerr-lens mode-locked laser with all-normal dispersion at 2.4 μm (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210352
Category: Special issue—ultrafast and ultraintense mid-infrared laser technology
Received: May. 30, 2021
Accepted: --
Published Online: Nov. 2, 2021
The Author Email: Qing Wang (qingwang@bit.edu.cn)