Chinese Journal of Lasers, Volume. 47, Issue 8, 803001(2020)
Polarization-Independent and Incident-Angle-Insensitive Switchable Broadband Absorber/Reflector Based on Single-Layer Graphene
[1] Zhang X M, Wu W W, Li C X et al. A dual-band terahertz absorber with two passbands based on periodic patterned graphene[J]. Materials, 12, 3016(2019).
[3] Chen M, Singh L, Xu N N et al. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials[J]. Optics Express, 25, 14089-14097(2017).
[4] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).
[5] Huang L, Chen H T. A brief review on terahertz metamaterial perfect absorbers[J]. Terahertz Science and Technology, 6, 26-39(2013).
[7] Zhang Y P, Li Y, Cao Y Y et al. Graphene induced tunable and polarization-insensitive broadband metamaterial absorber[J]. Optics Communications, 382, 281-287(2017).
[8] Huang X, He W, Yang F et al. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime[J]. Optics Express, 26, 25558-25566(2018).
[9] Guo W L, Liu Y X, Han T C. Ultra-broadband infrared metasurface absorber[J]. Optics Express, 24, 20586(2016).
[10] Ding F, Dai J, Chen Y T et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 6, 39445(2016).
[11] Xiong H, Wu Y B, Dong J et al. Ultra-thin and broadband tunable metamaterial graphene absorber[J]. Optics Express, 26, 1681-1688(2018).
[12] Zhang Y, Shi Y, Liang C H. Broadband tunable graphene-based metamaterial absorber[J]. Optical Materials Express, 6, 3036(2016).
[13] Hu N, Wu F L, Bian L et al. Dual broadband absorber based on graphene metamaterial in the terahertz range[J]. Optical Materials Express, 8, 3899-3909(2018).
[14] Zhu B, Feng Y J, Zhao J M et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J]. Applied Physics Letters, 97, 051906(2010).
[15] Zhu B, Feng Y J, Zhao J M et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber[J]. Optics Express, 18, 23196-23203(2010).
[16] Xu Z C, Gao R M, Ding C F et al. Photoexited switchable metamaterial absorber at terahertz frequencies[J]. Optics Communications, 344, 125-128(2015).
[18] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 8, 1086-1101(2014).
[19] Zhao Y T, Wu B, Huang B J et al. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface[J]. Optics Express, 25, 7161-7169(2017).
[20] Fu P, Liu F, Ren G J et al. A broadband metamaterial absorber based on multi-layer graphene in the terahertz region[J]. Optics Communications, 417, 62-66(2018).
[21] Ju L, Geng B S, Horng J et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 6, 630-634(2011).
[22] Mou N L, Sun S L, Dong H X et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces[J]. Optics Express, 26, 11728-11736(2018).
[24] Jiang T, Huang D, Cheng J et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene[J]. Nature Photonics, 12, 430-436(2018).
[26] Zhang Q, Bai L H, Bai Z Y et al. Theoretical analysis and design of a near-infrared broadband absorber based on EC model[J]. Optics Express, 23, 8910-8917(2015).
[27] Li J S, Sun J Z. Umbrella-shaped graphene/Si for multi-band tunable terahertz absorber[J]. Applied Physics B, 125, 183(2019).
Get Citation
Copy Citation Text
Li Hui, Yu Jiang, Chen Zhe. Polarization-Independent and Incident-Angle-Insensitive Switchable Broadband Absorber/Reflector Based on Single-Layer Graphene[J]. Chinese Journal of Lasers, 2020, 47(8): 803001
Category: materials and thin films
Received: Mar. 10, 2020
Accepted: --
Published Online: Aug. 17, 2020
The Author Email: Jiang Yu (jiangyu@ynu.educn)