Electro-Optic Technology Application, Volume. 40, Issue 1, 1(2025)
Influence of Thermal Effects in Passive Q-Switching Cr4+:YAG Crystal on the Properties of Beam Quality and Longitudinal Mode
[1] [1] GUO X Y, TOKITA S, KAWANAKA J. High beam quality and high peak power Yb:YAG/Cr:YAG microchip laser[J]. Optics Express, 2019, 27(1): 45-54.
[4] [4] PENG J Y, ZHENG Y, SHI Y X, et al. Passively Q-switched a-cut Nd:GdVO4 self-Raman laser with Cr:YAG[J]. Optics & Laser Technology, 2012, 44(7): 2175-2177.
[5] [5] WU Z G, CONG Z H, CHEN X H, et al. Passively Q-switched 1 097 nm c-cut Nd:YVO4 self-Raman laser with Cr:YAG saturable absorber[J]. Optics & Laser Technology, 2013, 54: 137-140.
[6] [6] LEE K, LEE H C, CHO J Y, et al. Passively Q-switched, high peak power Nd:YAG laser pumped by QCW diode laser[J]. Optics & Laser Technology, 2012, 44(7): 2053-2057.
[7] [7] HE K N, GAO C Q, WEI Z Y, et al. Diode-pumped passively Q-switched Nd:LuVO4 laser at 916 nm[J]. Optics Communications, 2009, 282(12): 2413-2416.
[8] [8] XUE J W, PAN Y, CHEN W, et al. Cr:YAG passively Q-switched single-frequency Nd:YVO4 ring cavity laser[J]. Journal of the Optical Society of America B,2016, 33(9): 1815-1819.
[11] [11] SAWICKA-CHYLA M, DIVOKY M, SLEZAK O, et al. Numerical analysis of thermal effects in a concept of a cryogenically cooled Yb:YAG multislab 10 J/100 Hz laser amplifier[J]. IEEE Journal of Quantum Electronics,2019, 55(5): 5100108.
[12] [12] MUKHIN I B, PALASHOV O V, KHAZANOV E A, et al. Experimental study of thermally induced depolarization in Nd:YAG ceramics[J]. Optics Express, 2005, 13(16): 5983-5987.
[13] [13] PUNCKEN O, TNNERMANN H, MOREHEAD J J, et al. Intrinsic reduction of the depolarization in Nd:YAG crystals[J]. Optics Express, 2010, 18(19): 20461-20474.
[14] [14] YANG H M, FENG G Y, ZHOU S H. Thermal effects in high-power Nd:YAG disk-type solid state laser[J]. Optics & Laser Technology, 2011, 43(6): 1006-1015.
[15] [15] HONDA Y, MOTOKOSHI S, JITSUNO T, et al. Temperature dependence of optical properties in Nd/Cr:YAG materials[J]. Journal of Luminescence, 2014, 148: 342-346.
[16] [16] SHAN Y S, ZHANG L, ZHOU T Y, et al. One-order-higher Cr4+ conversion efficiency in Cr4+:YAG transparent ceramics for a high-frequency passively Q-switched laser[J]. Photonics Research, 2019, 7(8): 933-938.
[18] [18] KUCKS, PETERMANN K, POHLMANN U, et al. Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections[J]. Physical Review B, 1995, 51(24): 17323-17331.
[19] [19] SENNAROGLU A. Continuous wave thermal loading in saturable absorbers: theory and experiment[J]. Applied Optics, 1997, 36(36): 9528-9535.
[20] [20] DONG J. Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber[J]. Optics Communications, 2003, 226(1): 337-344.
[21] [21] LU M, CHATWIN C R, YOUNG R C D, et al. Numerical simulation of a CW-pumped Cr:YAG passively Q-switched Yb:YAG pulsed laser[J]. Optics and Lasers in Engineering, 2009, 47(6): 617-621.
[22] [22] MOHAMMADZAHERY Z, JANDAGHI M, ALIPOUR S, et al. Theoretical study on thermal behavior of passively Q-switched microchip Nd:YAG laser[J]. Optics & Laser Technology, 2012, 44(4): 1095-1100.
[23] [23] AGNESI A, DELL'ACQUA S, MORELLO C, et al. Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 45-52.
Get Citation
Copy Citation Text
CHEN Yifu, BAI Zhenxu, ZHANG Yakai, JIN Duo, WANG Yulei, LYU Zhiwei. Influence of Thermal Effects in Passive Q-Switching Cr4+:YAG Crystal on the Properties of Beam Quality and Longitudinal Mode[J]. Electro-Optic Technology Application, 2025, 40(1): 1