Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1885(2025)

Interface Degradation Mechanisms between Lithium Metal and Halide Electrolytes and Their Suppression Strategies

REN Fucheng1,2,3, WANG Feilong2, ZHANG Yilin2, and WANG Shuo1,2,3
Author Affiliations
  • 1Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315200, Zhejiang, China
  • 2Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, Zhejiang, China
  • 3Ningbo Key Laboratory of All-Solid-State Battery, Ningbo 315200, Zhejiang, China
  • show less
    References(43)

    [1] [1] LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries[J]. Nat Rev Mater, 2019, 4: 312–330.

    [2] [2] ZHANG Y, ZUO T T, POPOVIC J, et al. Towards better Li metal anodes: Challenges and strategies[J]. Mater Today, 2020, 33: 56–74.

    [3] [3] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1(4): 16030.

    [4] [4] PANG M C, YANG K, BRUGGE R, et al. Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries[J]. Mater Today, 2021, 49: 145–183.

    [5] [5] ZHANG Q, CAO D X, MA Y, et al. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries[J]. Adv Mater, 2019, 31(44): 1901131.

    [6] [6] ZHAO N, KHOKHAR W, BI Z J, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190–1199.

    [7] [7] LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ Sci, 2020, 13(5): 1429–1461.

    [8] [8] WU J H, LIU S F, HAN F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv Mater, 2021, 33(6): e2000751.

    [9] [9] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem Mater, 2016, 28(1): 266–273.

    [10] [10] LIANG J W, LI X N, ADAIR K R, et al. Metal halide superionic conductors for all-solid-state batteries[J]. Acc Chem Res, 2021, 54(4): 1023–1033.

    [11] [11] YAN H, YAO J M, YE Z R, et al. Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes[J]. Chin Chem Lett, 2025, 36(1): 109568.

    [12] [12] YU P C, ZHANG H C, HUSSAIN F, et al. Lithium metal-compatible antifluorite electrolytes for solid-state batteries[J]. J Am Chem Soc, 2024, 146(18): 12681–12690.

    [13] [13] LI W H, LI M S, WANG S, et al. Superionic conducting vacancy-rich -Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nat Nanotechnol, 2025, 20: 265–275.

    [14] [14] YAO Z Y, ZHANG J Q, YANG D R, et al. Achieving dendrite-free solid-state lithium-metal batteriesvia in situconstruction of Li3P/LiCl interfacial layers[J]. ACS Appl Mater Interfaces, 2024, 16(1): 869–877.

    [15] [15] LIN L D, LIANG F, ZHANG K Y, et al. Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode[J]. J Mater Chem A, 2018, 6(32): 15859–15867.

    [16] [16] KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nat Commun, 2023, 14(1): 2459.

    [17] [17] JAIN A, MONTOYA J, DWARAKNATH S, et al. The materials project: Accelerating materials design through theory-driven data and tools[M]//Handbook of Materials Modeling. Cham: Springer International Publishing, 2020: 1751–1784.

    [18] [18] ZHANG Y Q, TIAN Y S, XIAO Y H, et al. Direct visualization of the interfacial degradation of cathode coatings in solid state batteries: A combined experimental and computational study[J]. Adv Energy Mater, 2020, 10(27): 1903778.

    [19] [19] NOLAN A M, ZHU Y Z, HE X F, et al. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries[J]. Joule, 2018, 2(10): 2016–2046.

    [20] [20] XIAO Y H, MIARA L J, WANG Y, et al. Computational screening of cathode coatings for solid-state batteries[J]. Joule, 2019, 3(5): 1252–1275.

    [21] [21] CHEN R S, NOLAN A M, LU J Z, et al. The thermal stability of lithium solid electrolytes with metallic lithium[J]. Joule, 2020, 4(4): 812–821.

    [22] [22] REN F C, LIANG Z T, ZHAO W G, et al. The nature and suppression strategies of interfacial reactions in all-solid-state batteries[J]. Energy Environ Sci, 2023, 16(6): 2579–2590.

    [23] [23] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat Commun, 2015, 6: 8058.

    [24] [24] WU J Y, RAO Z X, LIU X T, et al. Polycationic polymer layer for air-stable and dendrite-free Li metal anodes in carbonate electrolytes[J]. Adv Mater, 2021, 33(12): e2007428.

    [25] [25] HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nat Energy, 2019, 4: 187–196.

    [26] [26] KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat Mater, 2019, 18(10): 1105–1111.

    [27] [27] HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.

    [28] [28] HAN F D, GAO T, ZHU Y J, et al. A battery made from a single material[J]. Adv Mater, 2015, 27(23): 3473–3483.

    [29] [29] ZHOU L D, ZUO T T, KWOK C Y, et al. High areal capacity, long cycle life 4V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nat Energy, 2022, 7: 83–93.

    [30] [30] LANNELONGUE P, LINDBERG S, GONZALO E, et al. Stable cycling of halide solid state electrolyte enabled by a dynamic layered solid electrolyte interphase between Li metal and Li3YCl4Br2[J]. Energy Storage Mater, 2024, 72: 103733.

    [31] [31] KWON P J, JUAREZ-YESCAS C, JEONG H, et al. Chemo- electrochemical evolution of cathode–solid electrolyte interface in all-solid-state batteries[J]. ACS Energy Lett, 2024, 9(10): 4746–4752.

    [32] [32] MANDAL L, BISWAS R K, BERA S, et al. Evolution of interfacial electro-chemo-mechanics between lithium metal and halide solid electrolyte[J]. Chem Mater, 2024, 36(20): 10336–10350.

    [33] [33] RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angew Chem Int Ed, 2021, 60(12): 6718–6723.

    [34] [34] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew Chem Int Ed, 2019, 58(24): 8039–8043.

    [35] [35] ZHU Y Z, HE X F, MO Y F. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries[J]. J Mater Chem A, 2016, 4(9): 3253–3266.

    [36] [36] SAMANTA S, BERA S, BISWAS R K, et al. Ionocovalency of the central metal halide bond-dependent chemical compatibility of halide solid electrolytes with Li6PS5Cl[J]. ACS Energy Lett, 2024, 9(8): 3683–3693.

    [37] [37] KOCHETKOV I, ZUO T T, RUESS R, et al. Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance[J]. Energy Environ Sci, 2022, 15(9): 3933–3944.

    [38] [38] HENNEQUART B, PLATONOVA M, CHOMETON R, et al. Atmospheric-pressure operation of all-solid-state batteries enabled by halide solid electrolyte[J]. ACS Energy Lett, 2024, 9(2): 454–460.

    [39] [39] WU Y Q, LI C, ZHENG X F, et al. High energy sulfide-based all-solid-state lithium batteries enabled by single-crystal Li-rich cathodes[J]. ACS Energy Lett, 2024, 9(10): 5156–5165.

    [40] [40] KRAUSKOPF T, RICHTER F H, ZEIER W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chem Rev, 2020, 120(15): 7745–7794.

    [41] [41] LEE C, HAN S Y, LEWIS J A, et al. Stack pressure measurements to probe the evolution of the lithium–solid-state electrolyte interface[J]. ACS Energy Lett, 2021, 6(9): 3261–3269.

    [42] [42] BECKER J, FUCHS T, ORTMANN T, et al. Microstructure of lithium metal electrodeposited at the Steel|Li6PS5Cl interface in “anode-free” solid-state batteries[J]. Adv Energy Mater, 2024: 2404975.

    [43] [43] LI S, YANG S J, LIU G X, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries[J]. Adv Mater, 2024, 36(3): e2307768.

    Tools

    Get Citation

    Copy Citation Text

    REN Fucheng, WANG Feilong, ZHANG Yilin, WANG Shuo. Interface Degradation Mechanisms between Lithium Metal and Halide Electrolytes and Their Suppression Strategies[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1885

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 2, 2025

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20250005

    Topics