Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1885(2025)
Interface Degradation Mechanisms between Lithium Metal and Halide Electrolytes and Their Suppression Strategies
[1] [1] LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries[J]. Nat Rev Mater, 2019, 4: 312–330.
[2] [2] ZHANG Y, ZUO T T, POPOVIC J, et al. Towards better Li metal anodes: Challenges and strategies[J]. Mater Today, 2020, 33: 56–74.
[3] [3] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1(4): 16030.
[4] [4] PANG M C, YANG K, BRUGGE R, et al. Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries[J]. Mater Today, 2021, 49: 145–183.
[5] [5] ZHANG Q, CAO D X, MA Y, et al. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries[J]. Adv Mater, 2019, 31(44): 1901131.
[6] [6] ZHAO N, KHOKHAR W, BI Z J, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190–1199.
[7] [7] LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ Sci, 2020, 13(5): 1429–1461.
[8] [8] WU J H, LIU S F, HAN F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv Mater, 2021, 33(6): e2000751.
[9] [9] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem Mater, 2016, 28(1): 266–273.
[10] [10] LIANG J W, LI X N, ADAIR K R, et al. Metal halide superionic conductors for all-solid-state batteries[J]. Acc Chem Res, 2021, 54(4): 1023–1033.
[11] [11] YAN H, YAO J M, YE Z R, et al. Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes[J]. Chin Chem Lett, 2025, 36(1): 109568.
[12] [12] YU P C, ZHANG H C, HUSSAIN F, et al. Lithium metal-compatible antifluorite electrolytes for solid-state batteries[J]. J Am Chem Soc, 2024, 146(18): 12681–12690.
[13] [13] LI W H, LI M S, WANG S, et al. Superionic conducting vacancy-rich -Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nat Nanotechnol, 2025, 20: 265–275.
[14] [14] YAO Z Y, ZHANG J Q, YANG D R, et al. Achieving dendrite-free solid-state lithium-metal batteriesvia in situconstruction of Li3P/LiCl interfacial layers[J]. ACS Appl Mater Interfaces, 2024, 16(1): 869–877.
[15] [15] LIN L D, LIANG F, ZHANG K Y, et al. Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode[J]. J Mater Chem A, 2018, 6(32): 15859–15867.
[16] [16] KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nat Commun, 2023, 14(1): 2459.
[17] [17] JAIN A, MONTOYA J, DWARAKNATH S, et al. The materials project: Accelerating materials design through theory-driven data and tools[M]//Handbook of Materials Modeling. Cham: Springer International Publishing, 2020: 1751–1784.
[18] [18] ZHANG Y Q, TIAN Y S, XIAO Y H, et al. Direct visualization of the interfacial degradation of cathode coatings in solid state batteries: A combined experimental and computational study[J]. Adv Energy Mater, 2020, 10(27): 1903778.
[19] [19] NOLAN A M, ZHU Y Z, HE X F, et al. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries[J]. Joule, 2018, 2(10): 2016–2046.
[20] [20] XIAO Y H, MIARA L J, WANG Y, et al. Computational screening of cathode coatings for solid-state batteries[J]. Joule, 2019, 3(5): 1252–1275.
[21] [21] CHEN R S, NOLAN A M, LU J Z, et al. The thermal stability of lithium solid electrolytes with metallic lithium[J]. Joule, 2020, 4(4): 812–821.
[22] [22] REN F C, LIANG Z T, ZHAO W G, et al. The nature and suppression strategies of interfacial reactions in all-solid-state batteries[J]. Energy Environ Sci, 2023, 16(6): 2579–2590.
[23] [23] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat Commun, 2015, 6: 8058.
[24] [24] WU J Y, RAO Z X, LIU X T, et al. Polycationic polymer layer for air-stable and dendrite-free Li metal anodes in carbonate electrolytes[J]. Adv Mater, 2021, 33(12): e2007428.
[25] [25] HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nat Energy, 2019, 4: 187–196.
[26] [26] KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat Mater, 2019, 18(10): 1105–1111.
[27] [27] HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.
[28] [28] HAN F D, GAO T, ZHU Y J, et al. A battery made from a single material[J]. Adv Mater, 2015, 27(23): 3473–3483.
[29] [29] ZHOU L D, ZUO T T, KWOK C Y, et al. High areal capacity, long cycle life 4V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nat Energy, 2022, 7: 83–93.
[30] [30] LANNELONGUE P, LINDBERG S, GONZALO E, et al. Stable cycling of halide solid state electrolyte enabled by a dynamic layered solid electrolyte interphase between Li metal and Li3YCl4Br2[J]. Energy Storage Mater, 2024, 72: 103733.
[31] [31] KWON P J, JUAREZ-YESCAS C, JEONG H, et al. Chemo- electrochemical evolution of cathode–solid electrolyte interface in all-solid-state batteries[J]. ACS Energy Lett, 2024, 9(10): 4746–4752.
[32] [32] MANDAL L, BISWAS R K, BERA S, et al. Evolution of interfacial electro-chemo-mechanics between lithium metal and halide solid electrolyte[J]. Chem Mater, 2024, 36(20): 10336–10350.
[33] [33] RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angew Chem Int Ed, 2021, 60(12): 6718–6723.
[34] [34] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew Chem Int Ed, 2019, 58(24): 8039–8043.
[35] [35] ZHU Y Z, HE X F, MO Y F. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries[J]. J Mater Chem A, 2016, 4(9): 3253–3266.
[36] [36] SAMANTA S, BERA S, BISWAS R K, et al. Ionocovalency of the central metal halide bond-dependent chemical compatibility of halide solid electrolytes with Li6PS5Cl[J]. ACS Energy Lett, 2024, 9(8): 3683–3693.
[37] [37] KOCHETKOV I, ZUO T T, RUESS R, et al. Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance[J]. Energy Environ Sci, 2022, 15(9): 3933–3944.
[38] [38] HENNEQUART B, PLATONOVA M, CHOMETON R, et al. Atmospheric-pressure operation of all-solid-state batteries enabled by halide solid electrolyte[J]. ACS Energy Lett, 2024, 9(2): 454–460.
[39] [39] WU Y Q, LI C, ZHENG X F, et al. High energy sulfide-based all-solid-state lithium batteries enabled by single-crystal Li-rich cathodes[J]. ACS Energy Lett, 2024, 9(10): 5156–5165.
[40] [40] KRAUSKOPF T, RICHTER F H, ZEIER W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chem Rev, 2020, 120(15): 7745–7794.
[41] [41] LEE C, HAN S Y, LEWIS J A, et al. Stack pressure measurements to probe the evolution of the lithium–solid-state electrolyte interface[J]. ACS Energy Lett, 2021, 6(9): 3261–3269.
[42] [42] BECKER J, FUCHS T, ORTMANN T, et al. Microstructure of lithium metal electrodeposited at the Steel|Li6PS5Cl interface in “anode-free” solid-state batteries[J]. Adv Energy Mater, 2024: 2404975.
[43] [43] LI S, YANG S J, LIU G X, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries[J]. Adv Mater, 2024, 36(3): e2307768.
Get Citation
Copy Citation Text
REN Fucheng, WANG Feilong, ZHANG Yilin, WANG Shuo. Interface Degradation Mechanisms between Lithium Metal and Halide Electrolytes and Their Suppression Strategies[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1885
Special Issue:
Received: Jan. 2, 2025
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: