Optoelectronic Technology, Volume. 42, Issue 4, 311(2022)

Study on Image Fusion Based on Latent Low⁃lank Representation and Cross⁃bilateral Filtering

Yuzhen SHEN, Peng ZHANG, Jun ZHANG, and Tao TANG
Author Affiliations
  • AVIC Huadong Photoelectric Co., Ltd, Wuhu Anhui 241002, CHN
  • show less
    References(29)

    [1] Li G, Lin Y, Qu X. An infrared and visible image fusion method based on multi-scale transformation and norm optimization[J]. Inform. Fusion, 71, 109-29(2021).

    [2] Zhang S, Li X, Zhang X et al. Infrared and visible image fusion based on saliency detection and two-scale transform decomposition[J]. Infrared Physics & Technology, 114, 103626(2021).

    [3] Song M, Liu L, Peng Y et al. Infrared & visible images fusion based on redundant directional lifting-based wavelet and saliency detection[J]. Infrared Physics & Technology, 101, 45-55(2019).

    [4] Hu P, Yang F, Ji L et al. An efficient fusion algorithm based on hybrid multiscale decomposition for infrared-visible and multi-type images[J]. Infrared Physics & Technology, 112, 103601(2021).

    [5] Panigrahy C, Seal A, Mahato N K et al. Multi-focus image fusion using fractal dimension[J]. Applied Optics, 59, 5642-5655(2020).

    [6] Seal A, Bhattacharjee D, Nasipuri M et al. A-trous wavelet transform‐based hybrid image fusion for face recognition using region classifiers[J]. Expert Systems, 35(2018).

    [7] Abuturab M R. Multiple color-image fusion and watermarking based on optical interference and wavelet transform[J]. Optics & Lasers in Engineering, 47-58(2017).

    [8] Qayyum A, Razzak I, Malik A S et al. Fusion of CNN and sparse representation for threat estimation near power lines and poles infrastructure using aerial stereo imagery[J]. Technological Forecasting and Social Change, 168, 120762(2021).

    [9] Liu Y, Chen X, Liu A et al. Recent advances in sparse representation based medical image fusion[J]. IEEE Instrumentation & Measurement Magazine, 24, 45-53(2021).

    [10] Zhang S, Huang F, Liu B et al. A multi-modal image fusion framework based on guided filter and sparse representation[J]. Optics and Lasers in Engineering, 137, 106354(2021).

    [11] Panigrahy C, Seal A, Mahato N K. MRI and SPECT image fusion using a weighted parameter adaptive dual channel PCNN[J]. IEEE Signal Processing Letters, 27, 690-694(2020).

    [12] Wu C, Chen L. Infrared and visible image fusion method of dual NSCT and PCNN[J]. Plos One, 15(2020).

    [13] Zhang Y, Liu Y, Sun P et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 54, 99-118(2020).

    [14] Liu Y, Chen X, Cheng J et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 16, 1850018(2018).

    [15] Feng Y, Lu H, Bai J et al. Fully convolutional network-based infrared and visible image fusion[J]. Multimedia Tools and Applications, 79, 15001-15014(2020).

    [16] Ben Hamza A, He Y, Krim H et al. A multiscale approach to pixel-level image fusion[J]. Integrated Computer-aided Engineering, 12, 135-146(2005).

    [17] Yang S, Wang M, Jiao L et al. Image fusion based on a new contourlet packet[J]. Information Fusion, 11, 78-84(2010).

    [18] Wang L, Li B, Tian L. EGGDD: An explicit dependency model for multi-modal medical image fusion in shift-invariant shearlet transform domain[J]. Information Fusion, 19, 29-37(2014).

    [20] Luo X, Zhang Z, Wu X. A novel algorithm of remote sensing image fusion based on shift-invariant Shearlet transform and regional selection[J]. AEU-International Journal of Electronics and Communications, 70, 186-197(2016).

    [21] Luo X, Zhang Z, Zhang B et al. Image fusion with contextual statistical similarity and nonsubsampled shearlet transform[J]. IEEE Sensors Journal, 6, 1(2017).

    [22] Zong J, Qiu T. Medical image fusion based on sparse representation of classified image patches[J]. Biomedical Signal Processing and Control, 34, 195-205(2017).

    [23] Liu G, Lin Z, Yu Y. Robust subspace segmentation by low-rank representation[C], 663-670(2010).

    [24] Liu G, Yan S. Latent low-rank representation for subspace segmentation and feature extraction[C], 1615-1622(2011).

    [25] Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C], 839-846(98).

    [26] Hu J, Li S. The multiscale directional bilateral filter and its application to multisensor image fusion[J]. Information Fusion, 13, 196-206(2012).

    [27] Kumar B K. Image fusion based on pixel significance using cross bilateral filter[J]. Signal,Image and Video Processing, 9, 1193-1204(2015).

    [30] Li H, Wu X J. Infrared and visible image fusion using latent low-rank representation[J]. arXiv preprint arXiv, 1804(2018).

    [31] Zhang M, Gunturk B K. Multi-resolution bilateral filtering for image denoising[J]. IEEE Transaction Image Process, 17, 2324-2333(2008).

    [32] Naidu V P S. Image fusion technique using multi-resolution singular value decomposition[J]. Defence Science Journal, 61, 479(2011).

    Tools

    Get Citation

    Copy Citation Text

    Yuzhen SHEN, Peng ZHANG, Jun ZHANG, Tao TANG. Study on Image Fusion Based on Latent Low⁃lank Representation and Cross⁃bilateral Filtering[J]. Optoelectronic Technology, 2022, 42(4): 311

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research and Trial-manufacture

    Received: May. 24, 2022

    Accepted: --

    Published Online: Dec. 23, 2022

    The Author Email:

    DOI:10.19453/j.cnki.1005-488x.2022.04.011

    Topics