Acta Photonica Sinica, Volume. 53, Issue 2, 0212005(2024)
Wood Inertial Measurement Unit Based on Laser-induced Graphene
[1] BOGUE R. MEMS sensors: past, present and future[J]. Sensor Review, 27, 7-13(2007).
[2] BENOUSSAAD M, SIJOBERT B, MOMBAUR K et al. Robust foot clearance estimation based on the integration of foot-mounted imu acceleration data[J]. Sensors, 16, 12(2015).
[3] LIM M K, DU H, SU C et al. A micromachined piezoresistive accelerometer with high sensitivity: design and modelling[J]. Microelectronic Engineering, 49, 263-272(1999).
[4] BADAOUI NEL, MORBIEU B, MARTIN P et al. Towards a solid-state ring laser gyroscope[J]. Comptes Rendus Physique, 15, 841-850(2014).
[5] QI Y, FENG W B, LI F K et al. An ultra-short coil fiber optic gyroscope[J]. Optics & Laser Technology, 157, 108751(2023).
[6] QIN Z, DING X, GE X et al. A mode order optimized disk resonator gyroscope considering thermoelastic damping[J]. International Journal of Mechanical Sciences, 236, 107737(2022).
[7] KHLIFI A, AHMED A, MEZGHANI B et al. Theoretical and numerical investigation of a new 3-axis su-8 mems piezoresistive accelerometer[J]. Microelectronics Journal, 128, 105552(2022).
[8] ZHANG J, HE C, ZHANG H et al. The dual cycle bridge detection of piezoresistive triaxial accelerometer based on mems technology[J]. Journal of Semiconductors, 35, 064012(2014).
[9] MUKHIYA R, SANTOSH M, SHARMA A et al. Fabrication and characterization of a bulk micromachined polysilicon piezoresistive accelerometer[J]. Materials Today: Proceedings, 48, 619-621(2022).
[10] KUROKAMI S, MOHAMAD ZBIN, YIN Y et al. Piezoresistive acceleration sensor with high sensitivity and high responsiveness[J]. Key Engineering Materials, 534, 169-172(2013).
[11] MESSINA M, NJUGUNA J, PALAS C. Mechanical structural design of a mems-based piezoresistive accelerometer for head injuries monitoring: a computational analysis by increments of the sensor mass moment of inertia: 1[J]. Sensors, 18, 289(2018).
[12] DONG P, LI X, YANG H et al. High-performance monolithic triaxial piezoresistive shock accelerometers[J]. Sensors and Actuators A: Physical, 141, 339-346(2008).
[13] ZHAI Y, LI H, TAO Z et al. Design, fabrication and test of a bulk sic mems accelerometer[J]. Microelectronic Engineering, 260, 111793(2022).
[14] RAUTELA R, ARYA S, VISHWAKARMA S et al. E-waste management and its effects on the environment and human health[J]. Science of The Total Environment, 773, 145623(2021).
[15] BAWA-ALLAH K A. Assessment of heavy metal pollution in nigerian surface freshwaters and sediment: a meta-analysis using ecological and human health risk indices[J]. Journal of Contaminant Hydrology, 256, 104199(2023).
[16] WANG Z, LUO P, ZHA X et al. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil[J]. Journal of Cleaner Production, 379, 134043(2022).
[17] JADHAO P R, AHMAD E, PANT K K et al. Advancements in the field of electronic waste recycling: critical assessment of chemical route for generation of energy and valuable products coupled with metal recovery[J]. Separation and Purification Technology, 289, 120773(2022).
[18] LEE C, WEI X, KYSAR J W et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 321, 385-388(2008).
[19] MÜLLER U, JOST T, KURZBÖCK C et al. Crash simulation of wood and composite wood for future automotive engineering[J]. Wood Material Science & Engineering, 15, 312-324(2020).
[20] PENG Z, YE R, MANN J A et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano, 9, 5868-5875(2015).
[21] BAI C, ZHANG J, GAO C et al. Planar micro-supercapacitor based on laser processing[J]. Chinese Journal of Lasers, 48, 0202013(2021).
[22] YU Y, JOSHI P C, WU J et al. Laser-induced carbon-based smart flexible sensor array for multiflavors detection[J]. ACS Applied Materials & Interfaces, 10, 34005-34012(2018).
[23] DIXIT N, SINGH S P. Laser-induced graphene (LIG) as a smart and sustainable material to restrain pandemics and endemics: a perspective[J]. ACS Omega, 7, 5112-5130(2022).
[24] WAN Z, N-TNGUYEN, GAO Y et al. Laser induced graphene for biosensors[J]. Sustainable Materials and Technologies, 25, e00205(2020).
[25] YE R, CHYAN Y, ZHANG J et al. Laser‐Induced graphene formation on wood[J]. Advanced Materials, 29, 1702211(2017).
[26] LI Chen, YANG Yanwei, XIA Tian et al. Integrated sensor based on laser-induced graphene on wood[J]. Chinese Journal of Lasers, 49, 0202005(2022).
[28] CHYAN Y, YE R, LI Y et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food[J]. ACS Nano, 12, 2176-2183(2018).
[29] HAN J, ZHAO Z, NIU W et al. A low cross-axis sensitivity piezoresistive accelerometer fabricated by masked-maskless wet etching[J]. Sensors and Actuators A: Physical, 283, 17-25(2018).
Get Citation
Copy Citation Text
Chen LI, Hao LI, Yanwei YANG. Wood Inertial Measurement Unit Based on Laser-induced Graphene[J]. Acta Photonica Sinica, 2024, 53(2): 0212005
Category: Instrumentation, Measurement and Metrology
Received: Jul. 21, 2023
Accepted: Aug. 29, 2023
Published Online: Mar. 28, 2024
The Author Email: Chen LI (lichen@sust.edu.cn)