Laser Technology, Volume. 48, Issue 6, 876(2024)
Research progress on polariton lasing in 2-D materials
[1] [1] SU R, DIEDERICHS C, WANG J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 2017, 17(6): 3982-3988.
[2] [2] RAM R J, PAU S, YAMAMOTO Y, et al. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers[J]. Physical Review, 1996, A53(6): 4250-4253.
[3] [3] CIUTI C, BAUMBERG J J, TEJEDOR C, et al. Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities[J]. Physical Review, 2002, B66(8): 85304.
[4] [4] MALPUECH G, DI CARLO A, KAVOKIN A, et al. Room-temperature polariton lasers based on GaN microcavities[J]. Applied Physics Letters, 2002, 81(3): 412-414.
[5] [5] KASPRZAK J, RICHARD M, KUNDERMANN S, et al. Bose-Einstein condensation of exciton polaritons[J]. Nature, 2006, 443(7110): 409-414.
[6] [6] KUMAR N. Bose-Einstein condensation in a dilute atomic vapour[J]. Current Science (Bangalore), 1995, 69(6): 492-493.
[7] [7] DENG H, WEIHS G, SNOKE D, et al. Polariton lasing vs. photon lasing in a semiconductor microcavity[J]. Proceedings of the National Academy of Sciences, 2003, 100(26): 15318-15323.
[8] [8] HAUG H, YAMAMOTO Y, DENG H. Exciton-polariton Bose-Einstein condensation[J]. Reviews of Modern Physics, 2010, 82(2): 1489-1537.
[9] [9] LIU X, GALFSKY T, SUN Z, et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 2015, 9(1): 30-34.
[10] [10] HEO J, JAHANGIR S, XIAO B, et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity[J]. Nano Lett, 2013, 13(6): 2376-2380.
[11] [11] DAS A, HEO J, JANKOWSKI M, et al. Room temperature ultralow threshold GaN nanowire polariton laser[J]. Physical Review Letters, 2011, 107(6): 66405.
[12] [12] WEI M, RUSECKAS A, MAI V T N, et al. Low threshold room temperature polariton lasing from fluorene-based oligomers[J]. Laser & Photonics Reviews, 2021, 15(8): 2100028.
[13] [13] FORREST S R, KNA-COHEN S. Room-temperature polariton lasing in an organic single-crystal microcavity[J]. Nature Photonics, 2010, 4(6): 371-375.
[14] [14] LA ROCCA G C. Polariton lasing[J]. Nature Photonics, 2010, 4(6): 343-345.
[15] [15] TANG J, ZHANG J, LV Y, et al. Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities[J]. Nature Communications, 2021, 12(1): 1-8.
[16] [16] FRENKEL J. On the transformation of light into heat in solids. Ⅰ[J]. Physical Review, 1931, 37(1): 17-44.
[17] [17] WEI M, RAJENDRAN S K, OHADI H, et al. Low-threshold polariton lasing in a highly disordered conjugated polymer[J]. Optica, 2019, 6(9): 1124-1129.
[18] [18] MOILANEN A J, ARNARDTTIR K B, KEELING J, et al. Mode switching dynamics in organic polariton lasing[J]. Physical Review, 2022, B106(19): 195403.
[19] [19] GHOSH P, YU D, HU T, et al. Strong exciton-photon coupling and polariton lasing in GaN microrod[J]. Journal of Materials Science, 2019, 54(11): 8472-8481.
[20] [20] CHRISTOPOULOS S, VON HOGERSTHAL G B, GRUNDY A J, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405.
[21] [21] ZHAO D, LIU W, ZHU G, et al. Surface plasmons promoted single-mode polariton lasing in a subwavelength ZnO nanowire[J]. Nano Energy, 2020, 78: 105202.
[22] [22] MASHARIN M A, SAMUSEV A K, BOGDANOV A A, et al. Room-temperature exceptional-point-driven polariton lasing from perovskite metasurface[J]. Advanced Functional Materials, 2023, 33(22): 2215007.
[23] [23] DAI S, MA Q, LIU M K, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J]. Nature Nanotechnology, 2015, 10(8): 682-686.
[24] [24] BRAR V W, JANG M S, SHERROTT M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547.
[25] [25] WANG X, CHENG Z, XU K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891.
[26] [26] CHEN J, BADIOLI M, ALONSO-GONZALEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81.
[27] [27] CHERNIKOV A, ZHANG X, RIGOSI A, et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2[J]. Physical Review, 2014, B90(20): 205422.
[28] [28] GU J, CHAKRABORTY B, KHATONIAR M, et al. A room-temperature polariton light-emitting diode based on monolayer WS2[J]. Nature Nanotechnology, 2019, 14(11): 1024-1028.
[29] [29] XIE P, LIANG Z, LI Z, et al. Coherent and incoherent coupling dynamics in a two-dimensional atomic crystal embedded in a plasmon-induced magnetic resonator[J]. Physical Review, 2020, B101(4): 45403.
[30] [30] WANG S, LE-VAN Q, VAIANELLA F, et al. Limits to strong coupling of excitons in multilayer WS2 with collective plasmonic resonances[J]. ACS Photonics, 2019, 6(2): 286-293.
[31] [31] HU T, WANG Y, WU L, et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons[J]. Applied Physics Letters, 2017, 110(5): 51101.
[32] [32] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.
[33] [33] YE Z, CAO T, O BRIEN K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 2014, 513(7517): 214-218.
[34] [34] BERKELBACH T C, HILL H M, RIGOSI A, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 2014, 113(7): 76802.
[35] [35] ZHENG J, BARTON R A, ENGLUND D. Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors[J]. ACS Photonics, 2014, 1(9): 768-774.
[36] [36] DUFFERWIEL S, SCHWARZ S, WITHERS F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 2015, 6(1): 1-7.
[37] [37] SCHWARZ S, DUFFERWIEL S, WALKER P M, et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities[J]. Nano Letters, 2014, 14(12): 7003-7008.
[38] [38] REED J C, ZHU A Y, ZHU H, et al. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter[J]. Nano Letters, 2015, 15(3): 1967-1971.
[39] [39] ZHANG L, WU F, HOU S, et al. Van der Waals heterostructure polaritons with moir-induced nonlinearity[J]. Nature, 2021, 591(7848): 61-65.
[40] [40] FLATTEN L C, HE Z, COLES D M, et al. Room-temperature exciton-polaritons with two-dimensional WS2[J]. Scientific Reports, 2016, 6: 33134.
[41] [41] WURDACK M, LUNDT N, KLAAS M, et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer[J]. Nature Communications, 2017, 8: 259.
[42] [42] WANG S, LI S, CHERVY T, et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature[J]. Nano Letters, 2016, 16(7): 4368-4374.
[43] [43] GIBBS H M, JAHNKE F, KIRA M, et al. Nonlinear optics of normal-mode-coupling semiconductor microcavities[J]. Reviews of Modern Physics, 1999, 71(5): 1591-1639.
[44] [44] OROSZ L, KAMOUN O, BOUCHOULE S, et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity[J]. Physical Review Letters, 2013, 110(19): 196406.
[45] [45] RVERET F, MALLET E, DISSEIX P, et al. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO[J]. Physical Review, 2016, B93(11): 115205.
[46] [46] DASKALAKIS K S, MAIER S A, MURRAY R, et al. Nonlinear interactions in an organic polariton condensate[J]. Nature Materials, 2014, 13(3): 271-278.
[47] [47] DENG H, WEIHS G, SNOKE D, et al. Condensation of semiconductor microcavity exciton polaritons[J]. Science, 2002, 298(5591): 199-202.
[48] [48] von HGERSTHAL G B H, GRUNDY A J D, LAGOUDAKIS P G, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405.
[49] [49] ZHANG S, CHEN J, SHI J, et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity[J]. ACS Photonics, 2020, 7(2): 327-337.
[50] [50] LIU X, BAO W, LI Q, et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide[J]. Physical Review Letters, 2017, 119(2): 27403.
[51] [51] WALDHERR M, LUNDT N, KLAAS M, et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity[J]. Nature Communications, 2018, 9(1): 1-6.
[52] [52] ANTON-SOLANAS C, WALDHERR M, KLAAS M, et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal[J]. Nature Materials, 2021, 20(9): 1233-1239.
[53] [53] ZHAO J, SU R, FIERAMOSCA A, et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature[J]. Nano Letters, 2021, 21(7): 3331-3339.
[54] [54] CHEN X, ALNATAH H, MAO D, et al. Bose condensation of upper-branch exciton-polaritons in a transferable microcavity[J]. Nano Letters, 2023, 23(20): 9538-9546.
[55] [55] BLANCON J C, STIER A V, TSAI H, et al. Scaling law for excitons in 2D perovskite quantum wells[J]. Nature Communications, 2018, 9(1): 1-10.
[56] [56] BLANCON J, EVEN J, STOUMPOS C C, et al. Semiconductor physics of organic-inorganic 2D halide perovskites[J]. Nature Nanotechnology, 2020, 15(12): 969-985.
[57] [57] FIERAMOSCA A, POLIMENO L, ARDIZZONE V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature[J]. Science Advances, 5(5): eaav9967.
[58] [58] ZHANG L, LIANG W. How the structures and properties of two-dimensional layered perovskites MAPbI3 and CsPbI3 vary with the number of layers[J]. The Journal of Physical Chemistry Letters, 2017, 8(7): 1517-1523.
[59] [59] HUANG H, BODNARCHUK M I, KERSHAW S V, et al. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance[J]. ACS Energy Letters, 2017, 2(9): 2071-2083.
[60] [60] PEDESSEAU L, SAPORI D, TRAORE B, et al. Advances and promises of layered halide hybrid perovskite semiconductors[J]. ACS Nano, 2016, 10(11): 9776-9786.
[61] [61] SAPAROV B, MITZI D. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596.
[62] [62] WANG J, SU R, XING J, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite[J]. ACS Nano, 2018, 12(8): 8382-8389.
[63] [63] YEN M, LEE C, YAO Y, et al. Tamm-plasmon exciton-polaritons in single-monolayered CsPbBr3 quantum dots at room temperature[J]. Advanced Optical Materials, 2023, 11(4): 2202326.
[64] [64] POLIMENO L, FIERAMOSCA A, LERARIO G, et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites[J]. Advanced Optical Materials, 2020, 8(16): 2000176.
[65] [65] LANTY G, LAURET J S, DELEPORTE E, et al. UV polaritonic emission from a perovskite-based microcavity[J]. Applied Physics Letters, 2008, 93(8): 81101.
[66] [66] WU J Z, LONG H, SHI X L, et al. Polariton lasing in InGaN quantum wells at room temperature[J]. Opto-Electronic Advances, 2019, 2(12): 190014.
[67] [67] BAUMBERG J J, CHRISTOPOULOS S, von HOGERSTHAL G B H, et al. Room temperature polariton lasing and BEC in semiconductor microcavities[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. San Jose, CA, USA: IEEE Press, 2008: 1-2
[68] [68] DAS A, HEO J, GUO W, et al. Room temperature polariton lasing in a single ZnO nanowire microcavity[C]//2012 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE Press, 2012: 1-2
[69] [69] KANG J W, SONG B, LIU W J, et al. Room temperature polariton lasing in quantum heterostructure nanocavities[J]. Science Advances, 2019, 5(4): eaau9338.
[70] [70] AL-ANI I A M, AS'HAM K, ALALOUL M, et al. Quasibound states in continuum-induced double strong coupling in perovskite and WS2 monolayers[J]. Physical Review, 2023, B108(4): 45420.
Get Citation
Copy Citation Text
ZHANG Ruiyang, BAO Wenrui, DU Jing, WANG Wei. Research progress on polariton lasing in 2-D materials[J]. Laser Technology, 2024, 48(6): 876
Category:
Received: Jan. 8, 2024
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: WANG Wei (w.wang@scu.edu.cn)