Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 4, 490(2024)

Design and implementation of multi-task diffraction neural network system

Zirong WANG1,2, Xingxiang ZHANG1、*, Yongji LONG1,2, Tianjiao FU1, and Mo ZHANG1,2
Author Affiliations
  • 1Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    Figures & Tables(20)
    Schematic diagram of digital full connection model and diffraction connection model
    Schematic diagram of the working principle of diffraction neural network
    Classification training results of four-layer(512×512)diffraction neural network image
    Phase parameters,angular spectrum and optical field distribution of each diffraction layer in network.
    Computational process of 4-layer diffraction neural network image recognition
    Simulation recognition results of 10 types of digital images
    Diffractive optical neural network model with nonlinear activation
    Phase distribution of diffraction layer of nonlinear diffraction neural network
    Performance comparison of 4-layer diffraction neural network
    Training results of diffraction neural network Fashion-MNIST
    Demonstration of nonlinear activation effect of phase modulation layer output and output layer of diffraction neural network
    Light path system of diffractive light neural network
    Simulation of diffraction model optical system by ZEMAX
    Comparison of ZEMAX simulation input and CMOS optical plane simulation calculation output
    Diffraction neural network optical path system physical and diffraction network working area selection and design
    Image classification performance of 4-layer diffractive optical neural network
    Recognition effect of optical image classification
    • Table 1. LC-SLM parameter specifications

      View table
      View in Article

      Table 1. LC-SLM parameter specifications

      参数规格参数值
      相位型SLM振幅型SLM
      生成厂商上海瑞立柯(UPOlabs)
      型号HDSLM80R
      工作波长420~1 100 nm
      分辨率1 920×1 200
      像素间距8 μm
      填充因子>95%
      调制位数10 bit(1 024)8 bit(256)
      尺寸110 mm×72 mm×24 mm158.9 mm×110.5 mm×31 mm
      相位范围5.7π/532 nm线性灰度级
    • Table 2. Performance of diffraction neural network with different number of diffraction neurons

      View table
      View in Article

      Table 2. Performance of diffraction neural network with different number of diffraction neurons

      相位模板尺寸衍射元尺寸/μm网络层数Epoch训练正确率/%测试正确率/%
      64×648410019.2±0.519.0±0.1
      128×1288410058.5±0.549.8±0.5
      256×2568410075.6±0.575.5±0.5
      512×5128410087.6±0.587.5±0.5
    • Table 3. CMOS parameter specifications

      View table
      View in Article

      Table 3. CMOS parameter specifications

      参数规格参数值
      生成厂商大恒图像
      型号MER2-2000
      分辨率5 496×3 672
      帧率19.6
      像元尺寸/μm2.4
      像元深度/bit8,12
      光谱黑白
      信噪比/dB42.08
    Tools

    Get Citation

    Copy Citation Text

    Zirong WANG, Xingxiang ZHANG, Yongji LONG, Tianjiao FU, Mo ZHANG. Design and implementation of multi-task diffraction neural network system[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(4): 490

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 15, 2023

    Accepted: --

    Published Online: May. 28, 2024

    The Author Email: Xingxiang ZHANG (jan_zxx@163.com)

    DOI:10.37188/CJLCD.2023-0144

    Topics