Journal of Optoelectronics · Laser, Volume. 36, Issue 6, 588(2025)

An improved hyperspectral image unmixing method based on constrained non-negative matrix factorization

WU Zhilong, GUO Baofeng*, YOU Jingyun, HUANG Feiqing, WANG Yiwei, and WANG Qinglin
Author Affiliations
  • School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
  • show less
    References(22)

    [1] [1] PATEL J R, JOSHI M V, BHATT J S. Abundance estimation using discontinuity preserving and sparsity-induced priors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7):2148-2158.

    [2] [2] KHAN M J, KHAN H S, YOUSAF A, et al. Modern trends in hyperspectral image analysis: a review[J]. IEEE Access, 2018, 6:14118-14129.

    [3] [3] JIANG J, MA J, WANG Z, et al. Hyperspectral image classification in the presence of noisy labels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):851-865.

    [4] [4] ZHANG W, LU X, LI X. Similarity constrained convex nonnegative matrix factorization for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4810-4822.

    [5] [5] NALEPA J, MYLLER M, KAWULOK M. Validating hyperspectral image segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8):1264-1268.

    [6] [6] FENG X R, LI H C, WANG R, et al. Hyperspectral unmixing based on nonnegative matrix factorization: a comprehensive review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:4414-4436.

    [7] [7] LV X, WANG W, LIU H. Cluster-wise weighted NMF for hyperspectral images unmixing with imbalanced data[J]. Remote Sensing, 2021, 13(2):268.

    [8] [8] WANG W, QIAN Y, LIU H. Multiple clustering guided nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:5162-5179.

    [9] [9] TIAN H, ZHAN Y, WANG L, et al. Constrained non-negative matrix factorization algorithm combined with spatial homogeneous area analysis for hyperspectral unmixing[J]. Journal of Applied Remote Sensing, 2019, 13(1):018504.

    [10] [10] ZHANG G, MEI S, TIAN J, et al. Local sparse representation based spatial preprocessing for endmember extraction[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, July 28-August 2, 2019, Yokohama, Japan. New York: IEEE, 2019:278-281.

    [11] [11] FERNANDEZ-BELTRAN R, PLA F, PLAZA A. Endmember extraction from hyperspectral imagery based on probabilistic tensor moments[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12):2120-2124.

    [12] [12] WANG M, ZHANG B, PAN X, et al. Group low-rank nonnegative matrix factorization with semantic regularizer for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4):1022-1029.

    [13] [13] ZHANG Z, LIAO S, ZHANG H, et al. Bilateral filter regularizedL2 sparse nonnegative matrix factorization for hyperspectral unmixing[J]. Remote Sensing, 2018, 10(6):816.

    [14] [14] SHAO Y, LAN J, ZHANG Y, et al. Spectral unmixing of hyperspectral remote sensing imagery via preserving the intrinsic structure invariant[J]. Sensors, 2018, 18(10):3528.

    [15] [15] LUPU D, NECOARA I, GARRETT J L, et al. Stochastic higher-order independent component analysis for hyperspectral dimensionality reduction[J]. IEEE Transactions on Computational Imaging, 2022, 8:1184-1194.

    [16] [16] JIA X, GUO B. Non-negative matrix factorization based on smoothing and sparse constraints for hyperspectral unmixing[J]. Sensors, 2022, 22(14):5417.

    [17] [17] ZHOU L, ZHANG X, WANG J, et al. Subspace structure regularized nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:4257-4270.

    [18] [18] YUAN Y, ZHANG Z, WANG Q. Improved collaborative non-negative matrix factorization and total variation for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:998-1010.

    [19] [19] RATHNAYAKE B, EKANAYAKE E M M B, WEERAKOON K, et al. Graph-based blind hyperspectral unmixing via nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9):6391-6409.

    [20] [20] YANG L, PENG J, SU H, et al. Combined nonlocal spatial information and spatial group sparsity in NMF for hyperspectral unmixing[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10):1767-1771.

    [21] [21] LU X, DONG L, YUAN Y. Subspace clustering constrained sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5):3007-3019.

    [22] [22] ZHANG S, ZHANG G, LI F, et al. Spectral-spatial hyperspectral unmixing using nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-13.

    Tools

    Get Citation

    Copy Citation Text

    WU Zhilong, GUO Baofeng, YOU Jingyun, HUANG Feiqing, WANG Yiwei, WANG Qinglin. An improved hyperspectral image unmixing method based on constrained non-negative matrix factorization[J]. Journal of Optoelectronics · Laser, 2025, 36(6): 588

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 3, 2024

    Accepted: Jun. 24, 2025

    Published Online: Jun. 24, 2025

    The Author Email: GUO Baofeng (gbf@hdu.edu.cn)

    DOI:10.16136/j.joel.2025.06.0004

    Topics