Optics and Precision Engineering, Volume. 30, Issue 13, 1606(2022)

Hyperspectral reconstruction from RGB images based on Res2-Unet deep learning network

Beibei SONG1、*, Suina MA1, Fan HE1, and Wenfang SUN2
Author Affiliations
  • 1School of Information Engineering, Chang'an University, Xi'an70064, China
  • 2School of Aerospace Science and Technology, Xidian University, Xi'an71016, China
  • show less
    References(30)

    [1] [1] 1郝博雅, 孙洁. 高光谱影像特性研究[J].计算机工程与应用, 2014, 50(S1): 230-233.HAOB Y, SUNJ. Research of hyper-spectral imaging characteristics[J]. Computer Engineering and Applications, 2014, 50(S1): 230-233. (in Chinese)

    [2] OZKAN S, KAYA B, AKAR G B. EndNet: sparse AutoEncoder network for endmember extraction and hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 482-496(2019).

    [3] GOVENDER M, CHETTY K, BULCOCK H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies[J]. Water SA, 33, 145-151(2009).

    [4] STEIN D W J, BEAVEN S G, HOFF L E et al. Anomaly detection from hyperspectral imagery[J]. IEEE Signal Processing Magazine, 19, 58-69(2002).

    [5] BARBIN D F, ELMASRY G, SUN D W et al. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging[J]. Food Chemistry, 138, 1162-1171(2013).

    [6] MARTIN M E, WABUYELE M B, CHEN K et al. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection[J]. Annals of Biomedical Engineering, 34, 1061-1068(2006).

    [7] [7] 7李勇, 王珂, 张立保, 等. 多断层融合的肺CT肿瘤靶区超分辨率重建[J]. 光学 精密工程, 2010, 18(5): 1212-1218.LIY, WANGK, ZHANGL B, et al. Super-resolution reconstruction of pulmonary nodules based on CT multi-section fusion[J]. Opt. Precision Eng., 2010, 18(5): 1212-1218. (in Chinese)

    [8] ARAD B, BEN-SHAHAR O, TIMOFTE R et al. NTIRE 2018 challenge on spectral reconstruction from RGB images[C], 1042-104209(2018).

    [9] ARAD B, TIMOFTE R, BEN-SHAHAR O et al. NTIRE 2020 challenge on spectral reconstruction from an RGB image[C], 1806-1822(2020).

    [10] WU J Q, AESCHBACHER J, TIMOFTE R. In defense of shallow learned spectral reconstruction from RGB images[C], 471-479(2017).

    [11] ARAD B, BEN-SHAHAR O. Sparse recovery of hyperspectral signal from natural RGB images[C], 19-34(2016).

    [12] [12] 12韩玉兰, 赵永平, 王启松, 等. 稀疏表示下的噪声图像超分辨率重构[J]. 光学 精密工程, 2017, 25(6): 1619-1626. doi: 10.3788/ope.20172506.1619HANY L, ZHAOY P, WANGQ S, et al. Reconstruction of super resolution for noise image under the sparse representation[J]. Opt. Precision Eng., 2017, 25(6): 1619-1626. (in Chinese). doi: 10.3788/ope.20172506.1619

    [13] [13] 13朱福珍, 刘越, 黄鑫, 等. 改进的稀疏表示遥感图像超分辨重建[J]. 光学 精密工程, 2019, 27(3): 718-725. doi: 10.3788/ope.20192703.0718ZHUF ZH, LIUY, HUANGX, et al. Remote sensing image super-resolution based on improved sparse representation[J]. Opt. Precision Eng., 2019, 27(3): 718-725. (in Chinese). doi: 10.3788/ope.20192703.0718

    [14] XIONG Z W, SHI Z, LI H Q et al. HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections[C], 518-525(2017).

    [15] STIEBEL T, KOPPERS S, SELTSAM P et al. Reconstructing spectral images from RGB-images using a convolutional neural network[C], 1061-10615(2018).

    [16] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C], 234-241(2015).

    [17] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C], 448-456(2015).

    [18] GOODFELLOW I, POUGET-ABADIE J, MIRZA M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).

    [19] LI J J, WU C X, SONG R et al. Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images[C], 1894-1903(2020).

    [20] ZHAO Y Z, PO L M, YAN Q et al. Hierarchical regression network for spectral reconstruction from RGB images[C], 1695-1704(2020).

    [21] PENG H, CHEN X M, ZHAO J. Residual pixel attention network for spectral reconstruction from RGB images[C], 2012-2020(2020).

    [22] GAO S H, CHENG M M, ZHAO K et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).

    [23] HU J, SHEN L, ALBANIE S et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).

    [24] [24] 24蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151. (in Chinese). doi: 10.37188/OPE.20212901.0142

    [25] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [26] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [27] ALOM M Z, YAKOPCIC C, TAHA T M et al. Nuclei segmentation with recurrent residual convolutional neural networks based U-net (R2U-net)[C]. OH, 228-233(2018).

    [28] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).

    [29] [29] 29佘晖, 吕玮阁, 邱珏沁, 等. 商用数码相机的光谱灵敏度测量及评价[J]. 光学仪器, 2017, 39(5): 15-21.SHEH, LÜW G, QIUJ Q, et al. Spectral sensitivity measurement and evaluation of commercial digital cameras[J]. Optical Instruments, 2017, 39(5): 15-21. (in Chinese)

    [30] MAAS A L, HANNUN A Y, Ng A Y. Rectifier nonlinearities improve neural network acoustic models[C], 30, 3(2013).

    Tools

    Get Citation

    Copy Citation Text

    Beibei SONG, Suina MA, Fan HE, Wenfang SUN. Hyperspectral reconstruction from RGB images based on Res2-Unet deep learning network[J]. Optics and Precision Engineering, 2022, 30(13): 1606

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jul. 2, 2021

    Accepted: --

    Published Online: Jul. 27, 2022

    The Author Email: Beibei SONG (bbsong@chd.edu.cn)

    DOI:10.37188/OPE.2021.0433

    Topics