Photonics Research, Volume. 9, Issue 4, B109(2021)

Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference

Linh V. Nguyen1、*, Cuong C. Nguyen2, Gustavo Carneiro2, Heike Ebendorff-Heidepriem1,3, and Stephen C. Warren-Smith1,3,4
Author Affiliations
  • 1Institute for Photonics and Advanced Sensing and School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
  • 2Australian Institute for Machine Learning, The University of Adelaide, Adelaide, SA 5005, Australia
  • 3Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, SA 5005, Australia
  • 4Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
  • show less
    References(51)

    [1] D. A. Krohn, T. W. MacDougall, A. Mendez. Fiber Optic Sensors: Fundamentals and Applications(2015).

    [2] B. Lee. Review of the present status of optical fiber sensors. Opt. Fibre Technol., 9, 57-79(2003).

    [3] X. Wang, O. S. Wolfbeis. Fiber-optic chemical sensors and biosensors (2015–2019). Anal. Chem., 92, 397-430(2020).

    [4] X. He, C. Ma, S. Wang, Z. Wang, L. Yuan. Pressure vector sensor based on an orthogonal optical path Sagnac interferometer. Opt. Express, 28, 7969-7979(2020).

    [5] Q. Tian, G. Xin, K.-S. Lim, Y. He, J. Liu, H. Ahmad, X. Liu, H. Yang. Cascaded Fabry-Perot interferometer-regenerated fiber Bragg grating structure for temperature-strain measurement under extreme temperature conditions. Opt. Express, 28, 30478-30488(2020).

    [6] V. Bhatia, D. Campbell, R. O. Claus, A. M. Vengsarkar. Simultaneous strain and temperature measurement with long-period gratings. Opt. Lett., 22, 648-650(1997).

    [7] X. Li, L. V. Nguyen, H. Ebendorff-Heidepriem, D. Pham, S. C. Warren-Smith. Simultaneous measurement of temperature and refractive index using an exposed core micro structured optical fiber. IEEE J. Sel. Quantum Electron., 26, 5600107(2020).

    [8] [8] 8Google Scholar search using “simultaneous measurement fiber sensor,” accessed October 25, 2020.

    [9] B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, C. Moser. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl., 7, 69(2018).

    [10] T. D. Cabral, E. Fujiwara, S. C. Warren-Smith, H. Ebendorff-Heidepriem, C. M. B. Cordeiro. Multimode exposed core fiber specklegram sensor. Opt. Lett., 45, 3212-3215(2020).

    [11] A. Yariv. Phase conjugate optics and real-time holography. IEEE J. Quantum Electron., 14, 650-660(1978).

    [12] I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express, 20, 10583-10590(2012).

    [13] T. Čižmár, K. Dholakia. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express, 19, 18871-18884(2011).

    [14] S. Bianchi, R. Di Leonardo. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip, 12, 635-639(2012).

    [15] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 109, 203901(2012).

    [16] A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, R. Piestun. Real-time resilient focusing through a bending multimode fiber. Opt. Express, 21, 12881-12887(2013).

    [17] M. N’Gom, T. B. Norris, E. Michielssen, R. R. Nadakuditi. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system. Opt. Lett., 43, 419-422(2018).

    [18] N. Borhani, E. Kakkava, C. Moser, D. Psaltis. Learning to see through multimode fibers. Optica, 5, 960-966(2018).

    [19] R. K. Gupta, R. D. Bruce, S. J. Powis, K. Dholakia. Deep learning enabled laser speckle wavemeter with a high dynamic range. Laser Photon. Rev., 14, 2000120(2020).

    [20] W. Xiong, B. Redding, S. Gertler, Y. Bromberg, H. D. Tagare, H. Cao. Deep learning of ultrafast pulses with a multimode fiber. APL Photon., 5, 096106(2020).

    [21] J. Wang, B. Dong, E. Lally, J. Gong, M. Han, A. Wang. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry–Perot interferometers. Opt. Lett., 35, 619-621(2010).

    [22] T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, M. A. Schmidt. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Therm. Eng., 91, 860-865(2015).

    [23] D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. IEEE Photon. Technol. Lett., 16, 2505-2507(2004).

    [24] X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, N. Peyghambarian. Detailed investigation of self-imaging in large core multimode optical fibers for application in fiber lasers and amplifiers. Opt. Express, 16, 16632-16645(2008).

    [25] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [26] T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, M. A. Schmidt. Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator. Opt. Express, 22, 25333-25346(2014).

    [27] S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, T. M. Monro. Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers. Opt. Express, 22, 29493-29504(2014).

    [28] L. V. Nguyen, K. Hill, S. C. Warren-Smith, T. M. Monro. Interferometric-type optical biosensor based on exposed-core microstructured optical fiber. Sens. Actuators B, 221, 320-327(2015).

    [29] S. Pevec, D. Donlagic. High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature. Opt. Express, 22, 16241-16253(2014).

    [30] J. W. Silverstone, S. McFarlane, C. P. K. Manchee, A. Meldrum. Ultimate resolution for refractometric sensing with whispering gallery mode microcavities. Opt. Express, 20, 8284-8295(2012).

    [31] Y. Jiang. Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Pérot interferometric sensors. IEEE Photon. Tech. Lett., 20, 75-77(2008).

    [32] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbart, L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1, 541-551(1989).

    [33] S. Aisawa, K. Noguchi, T. Matsumoto. Remote image classification through multimode optical fiber using a neural network. Opt. Lett., 16, 645-647(1991).

    [34] T. Matsumoto, M. Koga, K. Noguchi, S. Aizawa. Proposal for neural-network applications to fiber-optic transmission. Proceedings of 1990 IJCNN International Joint Conference on Neural Networks, 75-80(1990).

    [35] R. K. Marusarz, M. R. Sayeh. Neural network-based multimode fiber-optic information transmission. Appl. Opt., 40, 219-227(2001).

    [36] P. Caramazza, O. Moran, R. Murray-Smith, D. Faccio. Transmission of natural scene images through a multimode fibre. Nat. Commun., 10, 2029(2019).

    [37] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction(2009).

    [38] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, H. S. Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405, 947-951(2000).

    [39] D. K. Diederik, J. L. Ba. Adam: a method for stochastic optimization(2014).

    [42] B. Redding, S. M. Popoff, H. Cao. All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express, 21, 6584-6600(2013).

    [43] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, N. Lawrence. Dataset Shift in Machine Learning(2009).

    [44] R. Alaiz-Rodríguez, N. Japkowicz. Assessing the impact of changing environments on classifier performance. Advances in Artificial Intelligence, 13-24(2008).

    [45] M. Wang, W. Deng. Deep visual domain adaptation: a survey. Neurocomputing, 312, 135-153(2018).

    [46] D. Tasche. Fisher consistency for prior probability shift. J. Mach. Learn. Res., 18, 1-32(2017).

    [47] S. Geman, E. Bienenstock, R. Doursat. Neural networks and the bias/variance dilemma. Neural Comput., 4, 1-58(1992).

    [48] O. Bousquet, A. Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2, 499-526(2002).

    [49] C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals. Understanding deep learning requires rethinking generalization. International Conference on Learning Representation, 1-15(2017).

    [51] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning(2016).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu, "Deep learning in photonics: introduction," Photonics Res. 9, DLP1 (2021)

    Tools

    Get Citation

    Copy Citation Text

    Linh V. Nguyen, Cuong C. Nguyen, Gustavo Carneiro, Heike Ebendorff-Heidepriem, Stephen C. Warren-Smith, "Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference," Photonics Res. 9, B109 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: DEEP LEARNING IN PHOTONICS

    Received: Nov. 25, 2020

    Accepted: Feb. 3, 2021

    Published Online: Apr. 6, 2021

    The Author Email: Linh V. Nguyen (linhnguyen.research@gmail.com)

    DOI:10.1364/PRJ.415902

    Topics