Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1414(2025)
Challenges of Sulfide-Based All-Solid-State Batteries
[1] [1] FRITH J T, LACEY M J, ULISSI U. A non-academic perspective on the future of lithium-based batteries[J]. Nat Commun, 2023, 14(1): 420.
[2] [2] FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743–770.
[4] [4] REN D S, LU L G, HUA R, et al. Challenges and opportunities of practical sulfide-based all-solid-state batteries[J]. eTransportation, 2023, 18: 100272.
[5] [5] WU D X, WU F. Toward better batteries: Solid-state battery roadmap 2035+[J]. eTransportation, 2023, 16: 100224.
[6] [6] LEE T, QI J, GADRE C A, et al. Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3[J]. Nat Commun, 2023, 14(1): 1940.
[7] [7] WOO S, KANG B. Superior compatibilities of a LISICON-type oxide solid electrolyte enable high energy density all-solid-state batteries[J]. J Mater Chem A, 2022, 10(43): 23185–23194.
[8] [8] NIKODIMOS Y, JIANG S K, HUANG S J, et al. Moisture robustness of Li6PS5Cl argyrodite sulfide solid electrolyte improved by nano-level treatment with lewis acid additives[J]. ACS Energy Lett, 2024, 9(4): 1844–1852.
[10] [10] LI D X, LIANG D J, CHEN D N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angew Chem Int Ed, 2019, 58(46): 16427–16432.
[11] [11] LIANG J W, LI X N, WANG S, et al. Site-occupation-tuned superionic LixScCl3+xHalide solid electrolytes for all-solid-state batteries[J]. J Am Chem Soc, 2020, 142(15): 7012–7022.
[12] [12] LI Z, FU J L, ZHOU X Y, et al. Ionic conduction in polymer-based solid electrolytes[J]. Adv Sci, 2023, 10(10): e2201718.
[13] [13] SU Y, RONG X H, GAO A, et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries[J]. Nat Commun, 2022, 13(1): 4181.
[14] [14] SUN Z T, LIU M Y, ZHU Y, et al. Issues concerning interfaces with inorganic solid electrolytes in all-solid-state lithium metal batteries[J]. Sustainability, 2022, 14(15): 9090.
[15] [15] SCHWIETERT T K, ARSZELEWSKA V A, WANG C, et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes[J]. Nat Mater, 2020, 19(4): 428–435.
[16] [16] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.
[17] [17] BOULINEAU S, COURTY M, TARASCON J M, et al. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X =Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ion, 2012, 221: 1–5.
[18] [18] LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous -Li3PS4[J]. J Am Chem Soc, 2013, 135(3): 975–978.
[20] [20] HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.
[21] [21] ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl Mater Interfaces, 2015, 7(42): 23685–23693.
[22] [22] FITZHUGH W, WU F, YE L H, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Adv Energy Mater, 2019, 9(21): 1900807.
[23] [23] KLOPMAN G. Chemical reactivity and the concept of charge- and frontier-controlled reactions[J]. J Am Chem Soc, 1968, 90(2): 223–234.
[24] [24] ZHU Y Z, MO Y F. Materials design principles for air-stable lithium/sodium solid electrolytes[J]. Angew Chem Int Ed, 2020, 59(40): 17472–17476.
[25] [25] ZHANG J, HUANG L, GU X. Failure mechanism of solid-state electrolyte Li10GeP2S12 in a moist atmosphere: A first-principles study[J]. Mater Adv, 2022, 3(7): 3143–3150.
[26] [26] LIU H, ZHU Q S, WANG C, et al. High air stability and excellent Li metal compatibility of argyrodite-based electrolyte enabling superior all-solid-state Li metal batteries[J]. Adv Funct Mater, 2022, 32(32): 2203858.
[27] [27] LI G Y, WU S P, ZHENG H P, et al. Sn-O dual-substituted chlorine-rich argyrodite electrolyte with enhanced moisture and electrochemical stability[J]. Adv Funct Mater, 2023, 33(11): 2211805.
[28] [28] WEI C C, YU C, WANG R, et al. Sb and O dual doping of Chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries[J]. J Power Sources, 2023, 559: 232659.
[29] [29] LIANG J W, CHEN N, LI X N, et al. Li10Ge(P1–xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J]. Chem Mater, 2020, 32(6): 2664–2672.
[30] [30] CHOI Y J, HWANG Y J, KIM S I, et al. Triple-doped argyrodite sulfide electrolyte with improved air stability and lithium compatibility for all-solid-state Li-metal batteries[J]. Chem Eng J, 2024, 497: 154426.
[31] [31] JIN Y M, HE Q S, LIU G Z, et al. Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries[J]. Adv Mater, 2023, 35(19): 2211047.
[32] [32] WANG S, WU Y J, LI H, et al. Improving thermal stability of sulfide solid electrolytes: An intrinsic theoretical paradigm[J]. InfoMat, 2022, 4(8): e12316.
[33] [33] DUAN Y, QI X P, BAI X T, et al. The higher the better? Thermal stability and electrochemical properties of Cl-rich lithium argyrodite solid state electrolyte[J]. J Energy Storage, 2024, 101: 113723.
[34] [34] RUI X Y, REN D S, LIU X, et al. Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries[J]. Energy Environ Sci, 2023, 16(8): 3552–3563.
[35] [35] WANG S, WU Y J, MA T H, et al. Thermal stability between sulfide solid electrolytes and oxide cathode[J]. ACS Nano, 2022, 16(10): 16158–16176.
[36] [36] VISHNUGOPI B S, HASAN M T, ZHOU H W, et al. Interphases and electrode crosstalk dictate the thermal stability of solid-state batteries[J]. ACS Energy Lett, 2023, 8(1): 398–407.
[37] [37] XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991–2015.
[38] [38] ZHANG W B, SCHRDER D, ARLT T, et al. (Electro)chemical expansion during cycling: Monitoring the pressure changes in operating solid-state lithium batteries[J]. J Mater Chem A, 2017, 5(20): 9929–9936.
[39] [39] YU T Y, LEE H U, LEE J W, et al. Limitation of Ni-rich layered cathodes in all-solid-state lithium batteries[J]. J Mater Chem A, 2023, 11(45): 24629–24636.
[40] [40] RUESS R, SCHWEIDLER S, HEMMELMANN H, et al. Influence of NCM particle cracking on kinetics of lithium-ion batteries with liquid or solid electrolyte[J]. J Electrochem Soc, 2020, 167(10): 100532.
[41] [41] KOERVER R, AYGN I, LEICHTWEI T, et al. Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chem Mater, 2017, 29(13): 5574–5582.
[42] [42] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. J Am Chem Soc, 2013, 135(4): 1167–1176.
[43] [43] BAEK S W, HONMA I, KIM J, et al. Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery[J]. J Power Sources, 2017, 343: 22–29.
[44] [44] JUNG S K, GWON H, LEE S S, et al. Understanding the effects of chemical reactions at the cathode–electrolyte interface in sulfide based all-solid-state batteries[J]. J Mater Chem A, 2019, 7(40): 22967–22976.
[45] [45] NIE K H, HONG Y S, QIU J L, et al. Interfaces between cathode and electrolyte in solid state lithium batteries: Challenges and perspectives[J]. Front Chem, 2018, 6: 616.
[46] [46] LI X L, GUAN H L, MA Z J, et al. In/ex-situ Raman spectra combined with EIS for observing interface reactions between Ni-rich layered oxide cathode and sulfide electrolyte[J]. J Energy Chem, 2020, 48: 195–202.
[47] [47] NOMURA Y, YAMAMOTO K. Advanced characterization techniques for sulfide-based solid-state lithium batteries[J]. Adv Energy Mater, 2023, 13(13): 2203883.
[48] [48] HARUYAMA J, SODEYAMA K, TATEYAMA Y. Cation mixing properties toward co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery[J]. ACS Appl Mater Interfaces, 2017, 9(1): 286–292.
[49] [49] SAKUDA A, HAYASHI A, TATSUMISAGO M. Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chem Mater, 2010, 22(3): 949–956.
[50] [50] WANG L L, XIE R C, CHEN B B, et al.In-situvisualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nat Commun, 2020, 11(1): 5889.
[51] [51] OHTA N, TAKADA K, ZHANG L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Adv Mater, 2006, 18(17): 2226–2229.
[52] [52] HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chem Mater, 2014, 26(14): 4248–4255.
[53] [53] ZHANG J, ZHENG C, LI L J, et al. Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries[J]. Adv Energy Mater, 2020, 10(4): 1903311.
[54] [54] BIELEFELD A, WEBER D A, JANEK J. Microstructural modeling of composite cathodes for all-solid-state batteries[J]. J Phys Chem C, 2019, 123(3): 1626–1634.
[55] [55] STRAUSS F, BARTSCH T, DE BIASI L, et al. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries[J]. ACS Energy Lett, 2018, 3(4): 992–996.
[56] [56] HONG S B, LEE Y J, LEE H J, et al. Exploring the cathode active materials for sulfide-based all-solid-state lithium batteries with high energy density[J]. Small, 2024, 20(9): e2304747.
[57] [57] JUNG S H, KIM U H, KIM J H, et al. Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries[J]. Adv Energy Mater, 2020, 10(6): 1903360.
[58] [58] SHI J, LI P, HAN K, et al. High-rate and durable sulfide-based all-solid-state lithium battery within situLi2O buffering[J]. Energy Storage Mater, 2022, 51: 306–316.
[59] [59] LI X L, JIN L B, SONG D W, et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery[J]. J Energy Chem, 2020, 40: 39–45.
[60] [60] SHI J, MA Z H, HAN K, et al. Coupling novel Li7TaO6 surface buffering with bulk Ta-doping to achieve long-life sulfide-based all-solid-state lithium batteries[J]. J Mater Chem A, 2022, 10(40): 21336–21348.
[61] [61] SONG B H, LI W D, OH S M, et al. Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2017, 9(11): 9718–9725.
[62] [62] SHI J, MA Z H, WU D, et al. Low-cost BPO4in situsynthetic Li3PO4 coating and B/P-doping to boost 4.8 V cyclability for sulfide-based all-solid-state lithium batteries[J]. Small, 2024, 20(13): e2307030.
[63] [63] SAKUDA A, KITAURA H, HAYASHI A, et al. All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S–P2S5 electrolyte[J]. J Power Sources, 2009, 189(1): 527–530.
[64] [64] XIAO Y H, MIARA L J, WANG Y, et al. Computational screening of cathode coatings for solid-state batteries[J]. Joule, 2019, 3(5): 1252–1275.
[65] [65] LIN Z, LIU Z C, DUDNEY N J, et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829–2833.
[66] [66] LI X L, LIANG M, SHENG J, et al. Constructing double buffer layers to boost electrochemical performances of NCA cathode for ASSLB[J]. Energy Storage Mater, 2019, 18: 100–106.
[67] [67] WU J H, SHEN L, ZHANG Z H, et al. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes[J]. Electrochem Energy Rev, 2021, 4(1): 101–135.
[68] [68] OHTOMO T, HAYASHI A, TATSUMISAGO M, et al. All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling[J]. J Solid State Electrochem, 2013, 17(10): 2551–2557.
[69] [69] XU H J, YU Y R, WANG Z, et al. A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: Tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl hali-chalcogenides[J]. J Mater Chem A, 2019, 7(10): 5239–5247.
[70] [70] ZHANG Z X, ZHANG L, YAN X L, et al. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune[J]. J Power Sources, 2019, 410: 162–170.
[71] [71] ZHANG J, ZHENG C, LOU J T, et al. Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability[J]. J Power Sources, 2019, 412: 78–85.
[72] [72] LI S Q, WANG K, ZHANG G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Adv Funct Mater, 2022, 32(23): 2200796.
[73] [73] ZHAO L, DING B C, QIN X Y, et al. Revisiting the roles of natural graphite in ongoing lithium-ion batteries[J]. Adv Mater, 2022, 34(18): e2106704.
[74] [74] ZHANG H, YANG Y, REN D S, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Mater, 2021, 36: 147–170.
[75] [75] YANG S, YAMAMOTO K, MEI X H, et al. High rate capability from a graphite anode through surface modification with lithium iodide for all-solid-state batteries[J]. ACS Appl Energy Mater, 2022, 5(1): 667–673.
[76] [76] KAZYAK E, CHEN K H, CHEN Y X, et al. Enabling 4C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte[J]. Adv Energy Mater, 2022, 12(1): 2102618.
[77] [77] HLTSCHI L, JUD F, BORCA C, et al. Study of graphite cycling in sulfide solid electrolytes[J]. J Electrochem Soc, 2020, 167(11): 110558.
[78] [78] MARESCA G, TSURUMAKI D A, SUZUKI D N, et al. Improvement of graphite interfacial stability in all-solid-state cells adopting sulfide glassy electrolytes[J]. ChemElectroChem, 2021, 8(4): 689–696.
[79] [79] ZHANG Z H, WANG J, JIN Y M, et al. Insights on lithium plating behavior in graphite-based all-solid-state lithium-ion batteries[J]. Energy Storage Mater, 2023, 54: 845–853.
[80] [80] CALPA M, ROSERO-NAVARRO N C, MIURA A, et al. Argyrodite solid electrolyte-coated graphite as anode material for all-solid-state batteries[J]. J Sol Gel Sci Technol, 2022, 101(1): 8–15.
[81] [81] JIN Y, ZHU B, LU Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Adv Energy Mater, 2017, 7(23): 1700715.
[82] [82] ZHANG Z P, GAO L, SUN X B, et al. Matching strategy between sulfide solid electrolyte and various anodes: Electrolyte modification, interface engineering and electrode structure design[J]. Energy Storage Mater, 2024, 69: 103422.
[83] [83] SUN Q, ZENG G F, XU X, et al. Are sulfide-based solid-state electrolytes the best pair for Si anodes in Li-ion batteries? (adv. energy mater. 40/2024)[J]. Adv Energy Mater, 2024, 14(40): 2470176.
[84] [84] RANA M, RUDEL Y, HEUER P, et al. Toward achieving high areal capacity in silicon-based solid-state battery anodes: What influences the rate-performance?[J]. ACS Energy Lett, 2023, 8(7): 3196–3203.
[85] [85] DUNLAP N A, KIM S, JEONG J J, et al. Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries[J]. Solid State Ion, 2018, 324: 207–217.
[86] [86] TAN D H S, CHEN Y T, YANG H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494–1499.
[87] [87] OKUNO R, YAMAMOTO M, KATO A, et al. Stable cyclability caused by highly dispersed nanoporous Si composite anodes with sulfide-based solid electrolyte[J]. J Electrochem Soc, 2020, 167(14): 140522.
[88] [88] KIM J, KIM C, JANG I, et al. Si nanoparticles embedded in carbon nanofiber sheathed with Li6PS5Cl as an anode material for all-solid-state batteries[J]. J Power Sources, 2021, 510: 230425.
[89] [89] YU Z X, HE D Y, ZHAO X Y, et al. Improving the performance of silicon-based negative electrodes in all-solid-state batteries byin situcoating with lithium polyacrylate polymers[J]. ACS Appl Mater Interfaces, 2024, 16(47): 64691–64701.
[90] [90] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nat Mater, 2011, 11(1): 19–29.
[91] [91] WANG C H, LIANG J W, ZHAO Y, et al. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design[J]. Energy Environ Sci, 2021, 14(5): 2577–2619.
[92] [92] WENZEL S, RANDAU S, LEICHTWEI T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chem Mater, 2016, 28(7): 2400–2407.
[93] [93] HAN F D, YUE J, ZHU X Y, et al. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation[J]. Adv Energy Mater, 2018, 8(18): 1703644.
[94] [94] KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat Mater, 2019, 18(10): 1105–1111.
[95] [95] PORZ L, SWAMY T, SHELDON B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Adv Energy Mater, 2017, 7(20): 1701003.
[96] [96] MONROE C, NEWMAN J. The effect of interfacial deformation on electrodeposition kinetics[J]. J Electrochem Soc, 2004, 151(6): A880.
[97] [97] DUAN Y, BAI X T, YU T W, et al. Research progress and prospect in typical sulfide solid-state electrolytes[J]. J Energy Storage, 2022, 55: 105382.
[98] [98] LIANG Y H, LIU H, WANG G X, et al. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries[J]. InfoMat, 2022, 4(5): e12292.
[99] [99] DAVIS A L, GARCIA-MENDEZ R, WOOD K N, et al. Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces:Operandoanalysis and ALD interlayer effects[J]. J Mater Chem A, 2020, 8(13): 6291–6302.
[100] [100] ZHANG Z H, CHEN S J, YANG J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Appl Mater Interfaces, 2018, 10(3): 2556–2565.
[101] [101] ZENG D W, YAO J M, ZHANG L, et al. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes[J]. Nat Commun, 2022, 13(1): 1909.
[102] [102] YANG X F, GAO X J, JIANG M, et al. Grain boundary electronic insulation for high-performance all-solid-state lithium batteries[J]. Angew Chem Int Ed, 2023, 62(5): e202215680.
[103] [103] LUO M, WANG C H, DUAN Y, et al. Surface coating enabling sulfide solid electrolytes with excellent air stability and lithium compatibility[J]. Energy Environ Mater, 2024, 7(6): e12753.
[104] [104] DUAN H, WANG C H, YU R Z, et al.In situconstructed 3D lithium anodes for long-cycling all-solid-state batteries[J]. Adv Energy Mater, 2023, 13(24): 2300815.
[105] [105] HOMMA K, YONEMURA M, KOBAYASHI T, et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4[J]. Solid State Ion, 2011, 182(1): 53–58.
[106] [106] KAUP K, ZHOU L D, HUQ A, et al. Impact of the Li substructure on the diffusion pathways in alpha and beta Li3PS4: Anin situhigh temperature neutron diffraction study[J]. J Mater Chem A, 2020, 8(25): 12446–12456.
[107] [107] GAUTAM A, GHIDIU M, SUARD E, et al. On the lithium distribution in halide superionic argyrodites by halide incorporation in Li7–xPS6–xClx[J]. ACS Appl Energy Mater, 2021, 4(7): 7309–7315.
[108] [108] HIKIMA K, YAMAMOTO T, PHUC N H H, et al. Improved ionic conductivity of Li2S-P2S5-LiI solid electrolytes synthesized by liquid-phase synthesis[J]. Solid State Ion, 2020, 354: 115403.
[109] [109] WANG K, REN Q Y, GU Z Q, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nat Commun, 2021, 12(1): 4410.
[110] [110] LI H, LIN Q S, WANG J Z, et al. A cost-effective sulfide solid electrolyte Li7P3S7.5O3.5 with low density and excellent anode compatibility[J]. Angew Chem Int Ed, 2024, 63(37): e202407892.
[111] [111] SMITH W H, VASELABADI S A, WOLDEN C A. Argyrodite superionic conductors fabricated from metathesis-derived Li2S[J]. ACS Appl Energy Mater, 2022, 5(4): 4029–4035.
[112] [112] HU L, WANG J Z, WANG K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nat Commun, 2023, 14(1): 3807.
[113] [113] CHEN Y T, DUQUESNOY M, TAN D H S, et al. Fabrication of high-quality thin solid-state electrolyte films assisted by machine learning[J]. ACS Energy Lett, 2021: 1639–1648.
[114] [114] CAO D X, LI Q, SUN X, et al. Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy-density all-solid-state batteries[J]. Adv Mater, 2021, 33(52): e2105505.
[115] [115] HU L, REN Y L, WANG C W, et al. Fusion bonding technique for solvent-free fabrication of all-solid-state battery with ultrathin sulfide electrolyte[J]. Adv Mater, 2024, 36(29): e2401909.
[116] [116] ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Lett, 2021, 21(12): 5233–5239.
[117] [117] JIANG T L, HE P G, LIANG Y H, et al. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries[J]. Chem Eng J, 2021, 421: 129965.
[118] [118] ZHAO X L, XIANG P, WU J H, et al. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries[J]. Nano Lett, 2023, 23(1): 227–234.
[119] [119] TAN D H S, BANERJEE A, CHEN Z, et al. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries[J]. Nat Nanotechnol, 2020, 15(3): 170–180.
[120] [120] ZHU G L, ZHAO C Z, PENG H J, et al. A self-limited free-standing sulfide electrolyte thin film for all-solid-state lithium metal batteries[J]. Adv Funct Mater, 2021, 31(32): 2101985.
[121] [121] LIU H, HE P G, WANG G X, et al. Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries[J]. Chem Eng J, 2022, 430: 132991.
[122] [122] JIANG T L, HE P G, WANG G X, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Adv Energy Mater, 2020, 10(12): 1903376.
[123] [123] HONG S B, LEE Y J, KIM U H, et al. All-solid-state lithium batteries: Li+-conducting ionomer binder for dry-processed composite cathodes[J]. ACS Energy Lett, 2022, 7(3): 1092–1100.
[124] [124] LI Y X, WU Y J, MA T H, et al. Long-life sulfide all-solid-state battery enabled by substrate-modulated dry-process binder[J]. Adv Energy Mater, 2022, 12(37): 2201732.
[125] [125] HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Mater, 2019, 21: 390–398.
[126] [126] ATES T, KELLER M, KULISCH J, et al. Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte[J]. Energy Storage Mater, 2019, 17: 204–210.
[127] [127] TAN D H S, MENG Y S, JANG J. Scaling up high-energy-density sulfidic solid-state batteries: A lab-to-pilot perspective[J]. Joule, 2022, 6(8): 1755–1769.
[128] [128] KURFER J, WESTERMEIER M, TAMMER C, et al. Production of large-area lithium-ion cells–Preconditioning, cell stacking and quality assurance[J]. CIRP Ann, 2012, 61(1): 1–4.
[129] [129] WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Lett, 2022, 7(1): 410–416.
[130] [130] LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes[J]. Nat Energy, 2020, 5: 299–308.
[131] [131] YOKOTA M, MATSUNAGA T. Effect of roll press on consolidation and electric/ionic-path formation of electrodes for all-solid-state battery[J]. J Power Sources Adv, 2021, 12: 100078.
[132] [132] YERSAK T A, HAO F, KANG C, et al. Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries[J]. J Solid State Electrochem, 2022, 26(3): 709–718.
[133] [133] DIXIT M, BEAMER C, AMIN R, et al. The role of isostatic pressing in large-scale production of solid-state batteries[J]. ACS Energy Lett, 2022, 7(11): 3936–3946.
Get Citation
Copy Citation Text
DUAN Yi, XIAO Zunqiu, REN Yilun, WANG Jiantao. Challenges of Sulfide-Based All-Solid-State Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1414
Category:
Received: Dec. 31, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: WANG Jiantao (jiantaowang2002@126.com)