Laser & Optoelectronics Progress, Volume. 61, Issue 3, 0314004(2024)
Metallurgical Defects, Microstructure, and Mechanical Properties of ECY768 Alloy Processed via Laser Powder Bed Fusion (Invited)
[1] Vacchieri E, Costa A, Roncallo G et al. Service induced fcc→hcp martensitic transformation in a Co-based superalloy[J]. Materials Science and Technology, 33, 1100-1107(2017).
[2] Cartón-Cordero M, Campos M, Freund L P et al. Microstructure and compression strength of Co-based superalloys hardened by γ’ and carbide precipitation[J]. Materials Science and Engineering: A, 734, 437-444(2018).
[3] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).
[4] Guo M, Dai Y F, Huang B D. Application status and development of laser powder bed fusion technology in typical electromechanical aviation products[J]. Chinese Journal of Lasers, 50, 1602304(2023).
[5] Zhou R S, Wei K W, Liang J J et al. Basic process of new directional solidification nickel-based superalloy fabricated by laser powder bed fusion[J]. Chinese Journal of Lasers, 50, 2402304(2023).
[6] Qi S J, Xiong L, Chen M Y et al. TC4 titanium alloy track morphology and pore formation mechanism in laser powder bed fusion process[J]. Chinese Journal of Lasers, 50, 1202304(2023).
[7] Liang J Y, Zhang W Y, Liu W et al. Laser additive manufacturing and heat transfer performance measurement of lattice structure heat exchanger[J]. Chinese Journal of Lasers, 50, 0402014(2023).
[8] Ferreri N C, Ghorbanpour S, Bhowmik S et al. Effects of build orientation and heat treatment on the evolution of microstructure and mechanical properties of alloy Mar-M-509 fabricated via laser powder bed fusion[J]. International Journal of Plasticity, 121, 116-133(2019).
[9] Zhang W Q, Zhu H H, Hu Z H et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 53, 918-926(2017).
[10] Wang X D, Chen C Y, Zhao R X et al. Selective laser melting of carbon-free mar-M509 co-based superalloy: microstructure, micro-cracks, and mechanical anisotropy[J]. Acta Metallurgica Sinica (English Letters), 35, 501-516(2022).
[11] Zhang S Z, Lei Y P, Chen Z et al. Effect of laser energy density on the microstructure and texture evolution of hastelloy-X alloy fabricated by laser powder bed fusion[J]. Materials, 14, 4305-4317(2021).
[12] Yin J, Hao L, Yang L L et al. Investigation of interaction between vapor plume and spatter during selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 49, 1402213(2022).
[13] Zhang Y H, Chen H, Yang C et al. Influence of laser power on droplet transfer behavior and spatter in laser-MIG hybrid welding of aluminum alloy[J]. Laser & Optoelectronics Progress, 59, 1714005(2022).
[14] Zhong Q, Wei K W, Lu Z et al. High power laser powder bed fusion of Inconel 718 alloy: effect of laser focus shift on formability, microstructure and mechanical properties[J]. Journal of Materials Processing Technology, 311, 117824(2023).
[15] Guraya T, Singamneni S, Chen Z W. Microstructure formed during selective laser melting of IN738LC in keyhole mode[J]. Journal of Alloys and Compounds, 792, 151-160(2019).
[16] de Terris T, Andreau O, Peyre P et al. Optimization and comparison of porosity rate measurement methods of selective laser melted metallic parts[J]. Additive Manufacturing, 28, 802-813(2019).
[17] Seidgazov R D, Mirzade F K. Keyhole-induced porosity in laser manufacturing processes: formation mechanism and dependence on scan speed[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 1, 100044(2022).
[18] Liu J, Peng Q, Xie J X. Grain structure and metallurgical defects regulation of selective laser melted René 88DT superalloy[J]. Acta Metallurgica Sinica, 57, 191-204(2021).
[19] Yang X K. Influencing factors and restraining methods of crack formation in selection laser melting forming nickel-based superalloy IN738[D], 44-51(2020).
[20] Sun S S. Study on the Regulation of microcrack, microstructure and properties of GH3536 fabricated by selective laser melting[D], 51-67(2021).
[21] Qi T, Zhu H H, Zhang H et al. Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 135, 257-266(2017).
[22] Deng D Y, Peng R L, Brodin H et al. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments[J]. Materials Science and Engineering: A, 713, 294-306(2018).
[23] Lee J S, Lee J H, Choi B G et al. The solidification microstructure and carbide formation behaviors in the cobalt-based superalloy ECY768[M]. Eco-materials processing & design VI, 374-377(2005).
[24] Ramirez-Vidaurri L E, Castro-Román M, Herrera-Trejo M et al. Secondary dendritic arm spacing and cooling rate relationship for an ASTM F75 alloy[J]. Journal of Materials Research and Technology, 19, 5049-5065(2022).
[25] Gui W M, Zhang H Y, Yang M et al. The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature[J]. Journal of Alloys and Compounds, 695, 1271-1278(2017).
[26] Jiang W H, Guan H R, Hu Z Q. Effects of heat treatment on microstructures and mechanical properties of a directionally solidified cobalt-base superalloy[J]. Materials Science and Engineering: A, 271, 101-108(1999).
[27] Dong C, Liu Z D, Wang X T et al. Formation behavior of long needle-like M23C6 carbides in a nickel-based alloy without γ’ phase during long time aging[J]. Journal of Alloys and Compounds, 821, 153259(2020).
[28] Hou G C, Xie J, Yu J J et al. Room temperature tensile behaviour of K640S co-based superalloy[J]. Materials Science and Technology, 35, 530-535(2019).
[30] Zhang Q, Zhang H W, Jia X Y et al. Study on co-based superalloy K6509[J]. Journal of Materials Engineering, 37, 142-145(2009).
[31] Armstrong R W. Engineering science aspects of the Hall-Petch relation[J]. Acta Mechanica, 225, 1013-1028(2014).
[32] Dryepondt S, Nandwana P, Unocic K A et al. High temperature high strength austenitic steel fabricated by laser powder-bed fusion[J]. Acta Materialia, 231, 117876(2022).
[33] Queyreau S, Monnet G, Devincre B. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations[J]. Acta Materialia, 58, 5586-5595(2010).
[34] Ferguson J B, Lopez H, Kongshaug D et al. Revised orowan strengthening: effective interparticle spacing and strain field considerations[J]. Metallurgical and Materials Transactions A, 43, 2110-2115(2012).
[35] Bacon D J, Kocks U F, Scattergood R O. The effect of dislocation self-interaction on the orowan stress[J]. Philosophical Magazine, 28, 1241-1263(1973).
[36] Kelly P M. The effect of particle shape on dispersion hardening[J]. Scripta Metallurgica, 6, 647-656(1972).
[37] Liu L F, Ding Q Q, Zhong Y et al. Dislocation network in additive manufactured steel breaks strength-ductility trade-off[J]. Materials Today, 21, 354-361(2018).
Get Citation
Copy Citation Text
Haobo Liu, Kaiwen Wei, Qiao Zhong, Jianqiang Gong, Xiangyou Li, Xiaoyan Zeng. Metallurgical Defects, Microstructure, and Mechanical Properties of ECY768 Alloy Processed via Laser Powder Bed Fusion (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0314004
Category: Lasers and Laser Optics
Received: Sep. 25, 2023
Accepted: Nov. 27, 2023
Published Online: Mar. 7, 2024
The Author Email: Kaiwen Wei (Laser_wei@hust.edu.cn)
CSTR:32186.14.LOP232185