Chinese Journal of Lasers, Volume. 50, Issue 1, 0113016(2023)
Plasmonic Nanourchin Enhanced Hot Carrier Generation and Injection
Fig. 1. Characterization of NUs. (a) High-magnification TEM image, where the inset is optical photo of NUs colloidal solution; (b) low-magnification TEM image; (c) SEM image; (d) normalized extinction spectrum; (e) size distribution of NUs spikes; (f) size distribution of NUs cores
Fig. 2. Characterization of NUs-TiO2 composite structure. (a) Energy band diagram; (b) SEM image of NUs drop cast on TiO2 film; (c) XRD patterns of NUs-TiO2/FTO, TiO2/FTO and FTO; (d) transmission spectra; (e) reflection spectra; (f) absorption spectra; (g) PL images of NUs-TiO2 and TiO2
Fig. 3. Schematic of experimental set-up used for identifying the location of measured particles. (a) Schematic of photoelectrochemical (PEC) cell device; (b) low-magnification optical image of identified location; (c) high-magnification optical image of identified position; (d) SEM image of identified location
Fig. 4. PEC analysis of NUs-TiO2 at microscale level. (a) Time evolution of photocurrent under chopping illumination; (b) dependence of photocurrent on applied bias; (c) dependence of photocurrent on excitation source power; (d) stability measurement of NUs-TiO2
Fig. 5. FDTD-simulated electric filed distribution of a single NUs at different incident wavelengths. (a) 400 nm; (b) 514 nm; (c) 600 nm; (d) 800 nm
Get Citation
Copy Citation Text
Xi Wang, Hongyan Liang. Plasmonic Nanourchin Enhanced Hot Carrier Generation and Injection[J]. Chinese Journal of Lasers, 2023, 50(1): 0113016
Category: micro and nano optics
Received: Jul. 12, 2022
Accepted: Sep. 28, 2022
Published Online: Jan. 6, 2023
The Author Email: Liang Hongyan (hongyan.liang@tju.edu.cn)