Chinese Journal of Ship Research, Volume. 19, Issue 1, 29(2024)
Review of gait control and closed-loop motion control methods for bionic robotic fish
[4] BREDER C M, Jr. The locomotion of fishes[J]. Zoologica, 4, 159-297(1926).
[9] [9] DU S, WU Z X, WANG J, et al. Design control of a twomotactuated tunainspired robot system[J]. IEEE Transactions on Systems, Man, Cyberics: Systems, 2021, 51(8): 46704680.
[11] JI D X, REHMAN F U, AJWAD S A et al. Design and development of autonomous robotic fish for object detection and tracking[J]. International Journal of Advanced Robotic Systems, 17, 1-11(2020).
[13] ZHOU C L, LOW K H. Better endurance and load capacity: an improved design of manta ray robot (RoMan-II)[J]. Journal of Bionic Engineering, 7, S137-S144(2010).
[14] LIU H L, CURET O. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion[J]. Bioinspiration & Biomimetics, 13, 056006(2018).
[16] SHADWICK R E, GEMBALLA S. Structure, kinematics, and muscle dynamics in undulatory swimming[J]. Fish Physiology, 23, 241-280(2005).
[20] LI Y, XU Y T, WU Z G et al. A comprehensive review on fish-inspired robots[J]. International Journal of Advanced Robotic Systems, 19, 1-20(2022).
[25] REN Z Y, YANG X B, WANG T M et al. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed[J]. Bioinspiration & Biomimetics, 11, 016008(2016).
[28] TIAN R Y, LI L, WANG W et al. CFD based parameter tuning for motion control of robotic fish[J]. Bioinspiration & Biomimetics, 15, 026008(2020).
[29] [29] TAYL G I. Analysis of the swimming of long narrow animals[J]. Proceedings of the Royal Society A: Mathematical, Physical Engineering Sciences, 1952, 214(1117): 158–183.
[31] LIGHTHILL M J. Large-amplitude elongated-body theory of fish locomotion[J]. Proceedings of the Royal Society B: Biological Sciences, 179, 125-138(1971).
[34] [34] HLOCK J H. Actuat disk they: discontinuities in thermofluid dynamics[M]. New Yk: McGrawHill International Book Co. , 1978.
[38] JIANG H Z, LIU Y W. Nonlinear analysis of compliant robotic fish locomotion[J]. Journal of Vibration and Control, 28, 1673-1685(2022).
[46] YU J Z, WANG M, TAN M et al. Three-dimensional swimming[J]. IEEE Robotics & Automation Magazine, 18, 47-58(2011).
[47] [47] BUCHLI J, JAN IJSPEERT A. Distributed central pattern generat model f robotics application based on phase sensitivity analysis[C]Proceedings of the First International Wkshop on Biologically Inspired Approaches to Advanced Infmation Technology. Lausanne, Switzerl: Springer, 2004, 3141: 333−349.
[51] NGUYEN V D, TRAN Q D, VU Q T et al. Force optimization of elongated undulating fin robot using improved PSO-based CPG[J]. Computational Intelligence and Neuroscience, 2022, 2763865(2022).
[52] [52] JAN IJSPEERT A, ARBIB M A. Locomotion visually guided behavi in salamer: a neuromechanical study[C]Proceedings of SPIE 4196, Sens Fusion Decentralized Control in Robotic Systems III. Boston, MA, USA: SPIE, 2000, 4196: 62–71.
[53] [53] COHEN A H, ROSSIGNOL S, GRILLNER S. Neural control of rhythmic movements in vertebrates[M]. New Yk: Wiley, 1988.
[59] MATSUOKA K. Mechanisms of frequency and pattern control in the neural rhythm generators[J]. Biological Cybernetics, 56, 345-353(1987).
[60] [60] KIMURA H, FUKUOKA Y, NAKAMURA H. Biologically inspired adaptive dynamic walking of the quadruped on irregular terrain[M]HOLLERBACH J M, KODITSCHEK D E. The Ninth International Symposium on Robotics Research. London: Springer, 2000: 329–336.
[61] [61] CHOWDHURY A R, PA S K. Finding answers to biological control methods using modulated patterns: an application to bioinspired robotic fish[C]2015 IEEE International Conference on Robotics Automation (ICRA). Seattle, WA, USA: IEEE, 2015: 3146–3153.
[62] [62] WANG L, WANG S, CAO Z Q, et al. Motion control of a robot fish based on CPG[C]2005 IEEE International Conference on Industrial Technology. Hong Kong, China: IEEE, 2005: 1263–1268.
[69] [69] WANG J, WU Z X, TAN M, et al. Model predictive controlbased depth control in gliding motion of a gliding robotic dolphin[J]. IEEE Transactions on Systems, Man, Cyberics: Systems, 2021, 51(9): 5466–5477.
[72] LI X F, REN Q Y, XU J X. Precise speed tracking control of a robotic fish via iterative learning control[J]. IEEE Transactions on Industrial Electronics, 63, 2221-2228(2016).
[75] [75] LI G D, SHINTAKE J, HAYASHIBE M. Deep reinfcement learning framewk f underwater locomotion of soft robot[C]2021 IEEE International Conference on Robotics Automation (ICRA). Xi''an,China: IEEE, 2021: 1203312039.
Get Citation
Copy Citation Text
Wenqian WANG, Penglei MA, Guanghao LI, Chuanxin XU, Bing YAO, Guijie LIU. Review of gait control and closed-loop motion control methods for bionic robotic fish[J]. Chinese Journal of Ship Research, 2024, 19(1): 29
Category:
Received: Dec. 29, 2022
Accepted: --
Published Online: Mar. 18, 2025
The Author Email: