Bulletin of the Chinese Ceramic Society, Volume. 42, Issue 11, 4167(2023)

Research Progress on Silica Fiber-Based Thermal Insulation Materials

WU Yifan1,2、*, WANG Xingtao1,2, SUN Jinfeng1,2, MENG Yongqiang1,2, and WAN Hongjing3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(55)

    [1] [1] HU FWU S YSUN Y G. Hollow-structured materials for thermal insulation[J]. Advanced Materials201931(38): e1801001.

    [2] [2] CHARAI MSGHIOURI HMEZRHAB Aet al. Thermal insulation potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-based building materials[J]. Journal of Cleaner Production2021292: 126064.

    [3] [3] ZHAO YZHANG X LXU X F. Application and research progress of cold storage technology in cold chain transportation and distribution[J]. Journal of Thermal Analysis and Calorimetry2020139(2): 1419-1434.

    [4] [4] ALIFANOV O MSALOSINA M OBUDNIK S Aet al. Design of aerospace vehicles’ thermal protection based on heat-insulating materials with optimal structure[J]. Aerospace202310(7): 629.

    [5] [5] LEI Y FCHEN X HSONG H Het al. The influence of thermal treatment on the microstructure and thermal insulation performance of silica aerogels[J]. Journal of Non-Crystalline Solids2017470: 178-183.

    [6] [6] SHI B LXIE LMA Bet al. Preparation and properties of highly transparent SiO2 aerogels for thermal insulation[J]. Gels20228(11): 744.

    [7] [7] NG SJELLE B PSANDBERG L Iet al. Hollow silica nanospheres as thermal insulation materials for construction: impact of their morphologies as a function of synthesis pathways and starting materials[J]. Construction and Building Materials2018166: 72-80.

    [8] [8] BAO YGUO R YMA J Z. Hierarchical flower-like hollow SiO2@TiO2 spheres with enhanced thermal insulation and ultraviolet resistance performances for building coating[J]. ACS Applied Materials & Interfaces202012(21): 24250-24261.

    [9] [9] AN Z MHOU X BZHOU Pet al. A novel flexiblelayeredrecoverable SiO2 fiber skeleton and aerogel composites material prepared by papermaking process[J]. Ceramics International202147(9): 12963-12969.

    [10] [10] WANG LMA D HXU C Het al. Flexible TiO2/SiO2 nanofibrous membrane with high near-infrared reflectance for thermal insulation[J]. Journal of Non-Crystalline Solids2023616: 122489.

    [11] [11] MAO XZHAO LZHANG Ket al. Highly flexible ceramic nanofibrous membranes for superior thermal insulation and fire retardancy[J]. Nano Research202215(3): 2592-2598.

    [12] [12] YANG M MYANG L XCHEN Z Fet al. Flexible Electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation[J]. Ceramics International202349(6): 9165-9172.

    [13] [13] ZHU Z ZZHU K ZGUO J Het al. Preparation and durability evaluation of vanadium dioxide intelligent thermal insulation films[J]. Colloid and Interface Science Communications202248: 100619.

    [14] [14] ZHANG X XCHENG X TSI Yet al. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation[J]. Chemical Engineering Journal2022433: 133628.

    [15] [15] WANG J YPETIT DREN S Q. Transparent thermal insulation silica aerogels[J]. Nanoscale Advances20202(12): 5504-5515.

    [16] [16] WANG LMA D HXU C Het al. Preparation of flexible hollow TiO2 fibrous membranes for thermal-insulation applications by coaxial electrospinning[J]. Ceramics International202349(14): 22875-22881.

    [17] [17] ZHANG XLI NLIU X Het al. A novel approach to directly achieve SiO2 hollow nanofibers via mono-axis electrospinning united with fluorination technique[J]. Materials Letters2023330: 133307.

    [18] [18] QIN ZXU X JXU T Fet al. High-strength thermal insulating porous mullite fiber-based ceramics[J]. Journal of the European Ceramic Society202242(15): 7209-7218.

    [19] [19] LIU HTIAN YJIAO J Het al. Thermal conductivity modeling of hollow fiber-based porous structures for thermal insulation applications[J]. Journal of Non-Crystalline Solids2022575: 121188.

    [20] [20] BRENDEL HSEIFERT GRAETHER F. Heat transfer properties of hollow-fiber insulation materials at high temperatures[J]. Journal of Thermophysics and Heat Transfer201731(2): 463-472.

    [22] [22] TOBERER E SBARANOWSKI L LDAMES C. Advances in thermal conductivity[J]. Annual Review of Materials Research201242: 179-209.

    [24] [24] REGNER K TFREEDMAN J PMALEN J A. Advances in studying phonon mean free path dependent contributions to thermal conductivity[J]. Nanoscale and Microscale Thermophysical Engineering201519(3): 183-205.

    [25] [25] DARYABEIGI KCUNNINGTON G RKNUTSON J R. Heat transfer modeling for rigid high-temperature fibrous insulation[J]. Journal of Thermophysics and Heat Transfer201327(3): 414-421.

    [26] [26] SI Y SSUN J TLIU F Jet al. Rabbit-hair-like SiO2/PI composite nanofibers with super durability for thermal insulation[J]. Composites Part B: Engineering2023254: 110542.

    [27] [27] MALIK RKIM Y WSONG I H. High interfacial thermal resistance induced low thermal conductivity in porous SiC-SiO2 composites with hierarchical porosity[J]. Journal of the European Ceramic Society202040(3): 594-602.

    [28] [28] YU M TZHAO S SYANG Let al. Preparation of a superhydrophilic SiO2 nanoparticles coated chitosan-sodium phytate film by a simple ethanol soaking process[J]. Carbohydrate Polymers2021271: 118422.

    [29] [29] ZHANG W YGAO N JLI J Wet al. Enhanced anti-icing and anticorrosion properties of nano-SiO2 composite superhydrophobic coating constructed by a large-scale micropillar array approach[J]. Progress in Organic Coatings2023175: 107324.

    [31] [31] CHOI S SCHU BLEE S Get al. Titania-doped silica fibers prepared by electrospinning and sol-gel process[J]. Journal of Sol-Gel Science and Technology200430(3): 215-221.

    [33] [33] HROMDKO LKOUDELKOV EBULNEK Ret al. SiO2 fibers by centrifugal spinning with excellent textural properties and water adsorption performance[J]. ACS Omega20172(8): 5052-5059.

    [34] [34] LENG G QZHANG X GSHI T Tet al. Preparation and properties of polystyrene/silica fibres flexible thermal insulation materials by centrifugal spinning[J]. Polymer2019185: 121964.

    [35] [35] ZENG JWANG HCHEN Ret al. Preparation of long-lasting electret fiber felt by centrifugal air-assisted spinning process and electret post-treatment[J]. AIP Advances202111(7): 075325.

    [36] [36] WEITZ R THARNAU LRAUSCHENBACH Set al. Polymer nanofibers via nozzle-free centrifugal spinning[J]. Nano Letters20088(4): 1187-1191.

    [38] [38] DADOL G CKILIC ATIJING L Det al. Solution blow spinning (SBS) and SBS-spun nanofibers: materialsmethodsand applications[J]. Materials Today Communications202025: 101656.

    [39] [39] WANG H LZHANG X AWANG Net al. Ultralightscalableand high-temperature-resilient ceramic nanofiber sponges[J]. Science Advances20173(6): e1603170.

    [40] [40] JIA CLI LLIU Yet al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances[J]. Nature Communications202011: 3732.

    [43] [43] PANELS J EJOO Y L. Incorporation of vanadium oxide in silica nanofiber mats via electrospinning and sol-gel synthesis[J]. Journal of Nanomaterials20062006: 1-10.

    [44] [44] CHENG Z WSUN XKONG Jet al. Thermal insulating properties of hollow mullite fibers prepared on a ceiba bio-template[J]. Open Ceramics20216: 100112.

    [45] [45] ZHANG HLIU J LZHU S Z. Preparation and characterization of alumina-coated hollow quartz fiber reinforced Al2O3-SiO2 aerogel composite[J]. Journal of Wuhan University of Technology-Mater Sci Ed202237(3): 324-330.

    [46] [46] ZHANG B JTONG Z WPANG Y Fet al. Design and electrospun closed cell structured SiO2 nanocomposite fiber by hollow SiO2/TiO2 spheres for thermal insulation[J]. Composites Science and Technology2022218: 109152.

    [47] [47] GBEWONYO SCARPENTER A WGAUSE C Bet al. Low thermal conductivity carbon fibrous composite nanomaterial enabled by multi-scale porous structure[J]. Materials & Design2017134: 218-225.

    [48] [48] DU NFAN J TWU H J. Optimum porosity of fibrous porous materials for thermal insulation[J]. Fibers and Polymers20089(1): 27-33.

    [49] [49] WEN S YREN H BZHU J Yet al. Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance[J]. Journal of Porous Materials201926(4): 1027-1034.

    [50] [50] PENG YXIE Y SWANG Let al. High-temperature flexiblestrength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation[J]. Journal of the European Ceramic Society202141(2): 1471-1480.

    [51] [51] LI C NZHAO Z HLIU Y Ket al. Preparation and characterization of Al2O3/SiO2 composite nanofibers by using electrostatic spinning method[J]. Inorganic and Nano-Metal Chemistry201747(9): 1275-1278.

    [54] [54] HE SSUN G XCHENG X Det al. Nanoporous SiO2 grafted aramid fibers with low thermal conductivity[J]. Composites Science and Technology2017146: 91-98.

    [55] [55] ZHUO T TXIN B JCHEN Z Met al. Enhanced thermal insulation properties of PI nanofiber membranes achieved by doping with SiO2 nanoparticles[J]. European Polymer Journal2021153: 110489.

    [56] [56] YU Y XMA Q YZHANG J Bet al. Electrospun SiO2 aerogel/polyacrylonitrile composited nanofibers with enhanced adsorption performance of volatile organic compounds[J]. Applied Surface Science2020512: 145697.

    [57] [57] LI Y TGUO A RXU X Jet al. Preparation and properties of highly elasticlightweightand thermally insulating SiO2 fibrous porous materials[J]. Materials202215(9): 3069.

    [58] [58] JIANG DQIN JZHOU Xet al. Improvement of thermal insulation and compressive performance of Al2O3-SiO2 aerogel by doping carbon nanotubes[J]. Ceramics International202248(11): 16290-16299.

    [59] [59] DING YYANG L XYANG M Met al. Electrospinning of SiO2-based composites embedded TiO2 nanoparticles with ultra-strong suppression of radiative heat transfer[J]. Journal of Alloys and Compounds2023957: 170331.

    [60] [60] LONG XWEI X BHU Met al. Anisotropic and high-strength SiO2/cellulose nanofiber composite aerogel with thermal superinsulation and superhydrophobicity[J]. Ceramics International202349(17): 28621-28628.

    [61] [61] MORETTI EBELLONI EAGOSTI F. Innovative mineral fiber insulation panels for buildings: thermal and acoustic characterization[J]. Applied Energy2016169: 421-432.

    [63] [63] WANG KFU C YXU Aet al. Skin-friendly and highly fireproof fabric up to 1 142 ℃ weaved by basalt @ polyimide yarns[J]. Composites Part B: Engineering2022246: 110238.

    [64] [64] XUE R JLIU G LLIU F J. A simple and efficient method for the preparation of SiO2/PI/AF aerogel composite fabrics and their thermal insulation performance[J]. Ceramics International202349(1): 210-215.

    [66] [66] SHAO G FWU X DKONG Yet al. Microstructureradiative property and thermal shock behavior of TaSi2-SiO2-borosilicate glass coating for fibrous ZrO2 ceramic insulation[J]. Journal of Alloys and Compounds2016663: 360-370.

    Tools

    Get Citation

    Copy Citation Text

    WU Yifan, WANG Xingtao, SUN Jinfeng, MENG Yongqiang, WAN Hongjing. Research Progress on Silica Fiber-Based Thermal Insulation Materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 4167

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 19, 2023

    Accepted: --

    Published Online: Dec. 11, 2023

    The Author Email: Yifan WU (2290439231@qq.com)

    DOI:

    Topics