Electro-Optic Technology Application, Volume. 37, Issue 5, 20(2022)

Development and Prospect of Dehazing Imaging Technology Based on Polarization Characteristic of Scattering Light Field (Invited)

WANG Ji1,2, WEI Yi1,2, YANG Kui1,2, FAN Yingying1,2, LIU Fei1,2, LIU Jinpeng1,2, XIANG Meng1,2, XI Teli1,2, and SHAO Xiaopeng1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(55)

    [1] [1] HENRY R C,MAHADEV S,URQUIJO S,et al. Color perception through atmospheric haze[J/OL]. Journal of the Optical Society of America A, 2000,17(5):831.

    [2] [2] LIU Q,ZHANG H,LIN M, et al. Research on image dehazing algorithms based on physical model[C/OL]//2011 International Conference on Multimedia Technology, 2011:467-470.

    [3] [3] NARASIMHAN S G,NAYAR S K. Vision and the Atmosphere[J/OL]. International Journal of Computer Vision, 2002, 48(3):233-254.

    [4] [4] PARIHAR A S, GUPTA Y K, SINGODIA Y, et al. A comparative study of image dehazing algorithms[C/OL]//2020 5th International Conference on Communication and Electronics Systems (ICCES), 2020: 766-771.

    [5] [5] NARASIMHAN S G,NAYAR S K,SUN B, et al. Structured light in scattering media[C/OL]//Tenth IEEE International Conference on Computer Vision (ICCV’05), 2005,1(1):420-427.

    [6] [6] SARAFRAZ A, HAUS B K. A structured light method for underwater surface reconstruction[J/OL]. ISPRS Journal of Photogrammetry and Remote Sensing,2016(114): 40-52.

    [7] [7] MCLEAN E A,BURRIS H R,STRAND M P. Short-pulse range-gated optical imaging in turbid water[J/OL]. Applied Optics,1995,34(21):4343-4351.

    [8] [8] VOLLMERHAUSEN R H, JACOBS E L,DEVITT N M, et al. Modeling the target acquisition performance of laser-range-gated imagers[C/OL]//HOLST G C, AeroSense, Orlando, FL, 2003: 101.

    [9] [9] JAFFE J S. Performance bounds on synchronous laser line scan systems[J/OL]. Optics Express,2005,13(3): 738-748.

    [10] [10] KULP T J, GARVIS D, KENNEDY R, et al. Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging[J/OL]. Applied Optics, 1993, 32(19): 3520.

    [11] [11] GAO J, SUN J, WEI J, et al. Research of underwater target detection using a slit streak tube imaging lidar[C/OL]//2011 Academic International Symposium on Optoelectronics and Microelectronics Technology, 2011: 240-243.

    [12] [12] HAN J, YANG K, XIA M, et al. Resolution enhancement in active underwater polarization imaging with modulation transfer function analysis[J/OL]. Applied Optics, 2015,54(11): 3294.

    [13] [13] AMER K O, ELBOUZ M, ALFALOU A, et al. Enhancing underwater optical imaging by using a low-pass polarization filter[J/OL]. Optics Express,2019,27(2): 621-643.

    [15] [15] XING Z,YU L, ZEFU T, et al. A fog-removing treatment based on combining high-frequency emphasis filtering and histogram equalization[C/OL]//Proceedings of 2011 International Conference on Advanced Materials and Computer Science(ICAMCS 2011 Part3),Intelligent Information Technology Application Association, 2011: 639-643.

    [16] [16] HALLER I, NEDEVSCHI S. Design of interpolation functions for subpixel-accuracy stereo-vision systems[J/OL]. IEEE Transactions on ImIage Processing, 2012, 21(2): 889-898.

    [17] [17] SENGUPTA D, BISWAS A, GUPTA P. Non-linear weight adjustment in adaptive gamma correction for image contrast enhancement[J/OL]. Multimedia Tools and Applications, 2021, 80(3): 3835-3862.

    [18] [18] DAR K A, MITTAL S. An enhanced adaptive histogram equalization based local contrast preserving technique for HDR images[J/OL]. IOP Conference Series: Materials Science and Engineering, 2021, 1022(1): 012119.

    [19] [19] KIM J Y, KIM L S, HWANG S H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization[J/OL]. IEEE Transactions on Circuits and Systems for Video Technology,2001,11(4): 475-484.

    [20] [20] SONI B, MATHUR P. An improved image dehazing technique using CLAHE and guided filter[C/OL]//2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), 2020: 902-907.

    [21] [21] GALDRAN A, VAZQUEZ-CORRAL J, PARDO D, et al. Fusion-based variational image dehazing[J/OL]. IEEE Signal Processing Letters,2017, 24(2): 151-155.

    [22] [22] SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 15.

    [23] [23] HE K, SUN J, TANG X. Single iImage haze removal using dark channel prior[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.

    [24] [24] ROWE M P, PUGH E N, TYO J S, et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media[J/OL]. Optics Letters,1995,20(6): 608-610.

    [25] [25] SHWARTZ S, NAMER E, SCHECHNER Y Y. Blind haze separation[C/OL]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), 2006, 2: 1984-1991.

    [26] [26] TREIBITZ T, SCHECHNER Y Y. Polarization: beneficial for visibility enhancement?[C/OL]//2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 525-532.

    [27] [27] PANIGRAHI S, FADE J, ALOUINI M. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog[J/OL]. Journal of Optics, 2015, 17(6): 065703.

    [28] [28] MIYAZAKI D, AKIYAMA D, BABA M, et al. Polarization-based dehazing using two reference objects[C/OL]//2013 IEEE International Conference on Computer Vision Workshops, 2013: 852-859.

    [29] [29] FANG S, XIA X, HUO X, et al. Image dehazing using polarization effects of objects and airlight[J/OL]. Optics Express, 2014, 22(16): 19523-19537.

    [30] [30] LIU F, CAO L, SHAO X, et al. Polarimetric dehazing utilizing spatial frequency segregation of images[J/OL]. Applied Optics, 2015, 54(27): 8116.

    [31] [31] CAO L, SHAO X, LIU F, et al. Dehazing method through polarimetric imaging and multi-scale analysis[C/OL]//Satellite Data Compression, Communications, and Processing XI, SPIE, 2015, 9501: 266-273

    [32] [32] HUANG B, LIU T, HU H, et al. Underwater image recovery considering polarization effects of objects[J/OL]. Optics Express, 2016, 24(9): 9826-9838.

    [33] [33] Visibility enhancement of hazy images based on a universal polarimetric imaging method[J/OL]. Journal of Applied Physics, 2014, 116(17): 173107.

    [34] [34] LIANG J, REN L, QU E, et al. Method for enhancing visibility of hazy images based on polarimetric imaging[J/OL]. Photonics Research, 2014, 2(1): 38-44.

    [35] [35] LIANG J, REN L, JU H, et al.Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization[J/OL]. Optics Express, 2015, 23(20): 26146-26157.

    [36] [36] LIANG J, ZHANG W, REN L, et al.Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion[J/OL]. Applied Optics, 2016, 55(29): 8221-8226.

    [38] [38] TYO J S, ROWE M P, PUGH E N, et al. Target detection in optically scattering media by polarization-difference imaging[J/OL]. Applied Optics,1996,35(11): 1855-1870.

    [39] [39] TIAN H, ZHU J, TAN S, et al. Rapid underwater target enhancement method based on polarimetric imaging[J/OL]. Optics&Laser Technology, 2018(108): 515-520.

    [40] [40] GUAN J, REN W, CHENG Y. Stokes vector based interpolation method to improve the efficiency of bio-inspired polarization-difference imaging in turbid media[J/OL]. Journal of Physics D: Applied Physics, 2018, 51(14): 145402.

    [41] [41] WANG X, OUYANG J, WEI Y, et al. Real-time vision through haze based on polarization imaging[J/OL]. Applied Sciences, 2019, 9(1): 142.

    [42] [42] LIANG J, LIANG J, REN L, et al. Low-pass filtering based polarimetric dehazing method for dense haze removal[J/OL]. Optics Express, 2021, 29(18): 28178-28189.

    [43] [43] SUN X, LIU F, LIU J, et al. A criterion for imaging correlography based on optical properties of dynamic multiple scattering media[J/OL]. Optics Communications, 2021(490):126894.

    [44] [44] FREUND I, KAVEH M. Comment on "Polarization memory of multiply scattered light"[J/OL]. Physical Review B, 1992, 45(14): 8162-8164.

    [45] [45] NI X, ALFANO R R. Time-resolved backscattering of circularly and linearly polarized light in a turbid medium[J/OL]. Optics Letters, 2004, 29(23): 2773.

    [46] [46] ZHANG W, LIANG J, REN L. Haze-removal polarimetric imaging schemes with the consideration of airlight’s circular polarization effect[J/OL]. Optik,2019 (182):1099-1105.

    [47] [47] LIU F, LI X, HAN P, et al. Advanced visualization polarimetric imaging: removal of water spray effect utilizing circular polarization[J/OL]. Applied Sciences, 2021, 11(7): 2996.

    [48] [48] NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.

    [49] [49] LI Y, XUE Y, TIAN L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J/OL]. Optica, 2018, 5(10): 1181-1190.

    [50] [50] ZHANG J, SHAO J, LUO H, et al. Learning a convolutional demosaicing network for microgrid polarimeter imagery[J/OL]. Optics Letters, 2018, 43(18): 4534-4537.

    [51] [51] ZHOU C, TENG M G, HAN Y F, et al. Learning to dehaze with polarization[C]//35th Conference on Neural Information Processing Systems, 2021: 1-14.

    [52] [52] ZHU Y, ZHU Y, ZENG T, et al. Full scene underwater imaging with polarization and an untrained network[J/OL]. Optics Express, 2021, 29(25): 41865-41881.

    [53] [53] BI P, WANG D, CHEN W, et al. Image dehazing based on polarization information and deep prior learning[J/OL]. Optik, 2022(267):169746.

    [54] [54] YIN J L, HUANG Y C, CHEN B H, et al. Color transferred convolutional neural networks for image dehazing[J/OL]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 3957-3967.

    [55] [55] LI B, PENG X, WANG Z, et al. AOD-Net: all-in-one dehazing network[C/OL]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4770-4778.

    [56] [56] REN W, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[C/OL]// Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 154-169.

    [57] [57] LI B, GOU Y, GU S, et al. You only look yourself: unsupervised and untrained single image dehazing neural network[J/OL]. International Journal of Computer Vision, 2021, 129(5): 1754-1767.

    Tools

    Get Citation

    Copy Citation Text

    WANG Ji, WEI Yi, YANG Kui, FAN Yingying, LIU Fei, LIU Jinpeng, XIANG Meng, XI Teli, SHAO Xiaopeng. Development and Prospect of Dehazing Imaging Technology Based on Polarization Characteristic of Scattering Light Field (Invited)[J]. Electro-Optic Technology Application, 2022, 37(5): 20

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 7, 2022

    Accepted: --

    Published Online: Dec. 7, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics