Optics and Precision Engineering, Volume. 31, Issue 10, 1563(2023)

Textile defect recognition network based on label embedding

Ying LIU*, Wei JIANG, Guandian LI, Lei CHEN, and Shuang ZHAO
Author Affiliations
  • College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun130000, China
  • show less
    Figures & Tables(17)
    Structure of residual unit
    Overall of TDRNet architecture when training
    Overall of TDRNet Architecture When Testing
    Example of textile defect category
    Structure of Label Embedded Module
    principle of DP loss
    the dataset label distribution of Guangdong intelligent manufacturing category dataset
    visualization of searching initial learning rate of TDRNet based on improved Resnet-50
    visualization of learning rate schedule(γ=0.2) of TDRNet based on improved Resnet-50
    loss curve of TDRNet based on improved Resnet-50
    accuracy curve of TDRNet based on improved Resnet-50
    • Table 1. Backbone of TDRNet

      View table
      View in Article

      Table 1. Backbone of TDRNet

      Layer nameOutput sizeStrideDilated rate50-layer101-laer
      Input Layer720×720------
      Conv0360×360213×3,643×3,643×3,128
      Conv1_x180×180213×3,max pool
      1×1,643×3,641×1,256×31×1,643×3,641×1,256×3
      Conv2_x90×90221×1,1283×3,1281×1,512×41×1,1283×3,1281×1,512×4
      Conv3_x45×45221×1,2563×3,2561×1,1 024×61×1,2563×3,2561×1,1 024×23
      Conv4_x23×23221×1,5123×3,5121×1,2 048×31×1,5123×3,5121×1,2 048×3
      Conv512×12221×1,5123×3,5121×1,2 048×11×1,5123×3,5121×1,2 048×1
      --1×1----Global Average Pooling, FC,softmax
    • Table 2. Defect Category of GDIM-CD

      View table
      View in Article

      Table 2. Defect Category of GDIM-CD

      瑕疵

      名称

      粗分

      类标

      细分

      类标

      瑕疵

      名称

      粗分

      类标

      细分

      类标

      无疵点00星跳1618
      破洞11跳花1619
      水渍22断氨纶1720
      油渍23稀密档1821
      污渍24浪纹档1822
      三丝35色差档1823
      结头46磨痕1924
      花板跳57轧痕1925
      百脚68修痕1926
      毛粒79烧毛痕1927
      粗经810死皱2028
      松经911云织2029
      断经1012双纬2030
      吊经1113双经2031
      粗维1214跳纱2032
      纬缩1315筘路2033
      浆斑1416

      纬纱

      不良

      2034
      整经结1517
    • Table 3. Experimental environment of TDRNet

      View table
      View in Article

      Table 3. Experimental environment of TDRNet

      软硬件名称硬件型号/软件版本
      CPUIntel(R) Core(R) i7-10700KF@3.8GHz
      GPUNVIDIA RTX3090
      内存Fury HX432C16FB3K2/32
      操作系统Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-37-generic x86_64)
      CUDA版本11.1.1
      Python版本3.9.6
      Pytorch版本1.9.0
    • Table 4. Ablation study of TDRNet on rough-grained task

      View table
      View in Article

      Table 4. Ablation study of TDRNet on rough-grained task

      BackboneLEM ModelDP LossSeesaw LossTop1 err. (%)
      ResNet-50 (baseline)×××20.52
      ResNet-50××20.59
      ResNet-50×18.10
      ResNet-50××18.97
      ResNet-5017.32
      Improved ResNet-50×××19.94

      Improved ResNet-50

      (TDRNet-50)

      16.80
      ResNet-101×××19.58
      ResNet-10116.61
      Improved ResNet-101×××19.23

      Improved ResNet-101

      (TDRNet-101)

      16.35
    • Table 5. Comparison of the typical classification model experimental results for fine-grained task on GDIM-CD

      View table
      View in Article

      Table 5. Comparison of the typical classification model experimental results for fine-grained task on GDIM-CD

      ModelTop1 err./%Top5 err./%Params./MFLOPs/GFPS
      EfficientNet_B02525.1112.644.034.4033
      DenseNet-1692623.1112.4412.5235.5513
      EfficientNet_B42520.208.1517.5916.7016
      DenseNet-2012619.498.4618.1345.4411
      ResNext-502720.137.3423.0244.7426
      ResNet-501821.277.6023.5543.1336
      TDRNet-5017.455.2032.3458.9129
      EfficientNet_B62518.357.0840.7836.9111
      ResNet-1011820.047.7942.5481.7521
      TDRNet-10117.125.2751.3397.5319
      AlexNet1727.3411.1857.097.37277
      WRN502820.688.9966.88119.4219
      ViT_B_162920.069.7687.22249.129
      ViT_B_322920.3010.0887.8451.4944
      WRN1012819.138.63124.88237.0811
      VGG163023.8510.73134.35158.6821
      VGG193024.0110.54139.66201.6718
      ViT_L_162921.5511.09305.20815.693
      ViT_L_322921.3911.38306.02175.6617
    • Table 6. Comparison of the experimental results with fine-grained classification model for fine-grained task on GDIM-CD

      View table
      View in Article

      Table 6. Comparison of the experimental results with fine-grained classification model for fine-grained task on GDIM-CD

      ModelTDRNetMA-CNN31RA-CNN32WS-DAN33TASN34DCL35TransFG36
      BackboneResNet-50VGG-19VGG-19ResNet-50ResNet-50ResNet-50ViT_B_16
      Top1 err./%17.4520.1420.3118.1318.7018.5720.43
      Top5 err./%5.208.548.296.186.727.048.97
    Tools

    Get Citation

    Copy Citation Text

    Ying LIU, Wei JIANG, Guandian LI, Lei CHEN, Shuang ZHAO. Textile defect recognition network based on label embedding[J]. Optics and Precision Engineering, 2023, 31(10): 1563

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 10, 2022

    Accepted: --

    Published Online: Jul. 4, 2023

    The Author Email: Ying LIU (liuying02@cust.edu.cn)

    DOI:10.37188/OPE.20233110.1563

    Topics