Infrared and Laser Engineering, Volume. 54, Issue 8, 20250210(2025)
Infrared and visible image fusion based on cross-modal feature interaction and multi-scale reconstruction
[7] MA J Y, ZHANG H, SHAO Z F et al. GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-14(2021).
[8] LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 28, 2614-2623(2018).
[13] TANG L, YUAN J, ZHANG H et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 83, 79-92(2022).
[14] [14] JIA X Y, ZHU C, LI M Z, et al. LLVIP: A Visibleinfrared Paired Dataset f Lowlight Vision [C]2021 IEEECVF International Conference on Computer Vision Wkshops, 2021: 34893497.
[15] WANG Z S, CHEN Y L, SHAO W Y et al. SwinFuse: A residual swin transformer fusion network for infrared and visible images[J]. IEEE Transactions on Instrumentation and Measurement, 71, 1-12(2022).
[19] XIONG Z, CAO Y J, ZHANG X H et al. CMRFusion: A cross-domain multi-resolution fusion method for infrared and visible image fusion[J]. Optics and Lasers in Engineering, 170, 1-17(2023).
Get Citation
Copy Citation Text
Rui YAO, Kai WANG, Haofan GUO, Wentao HU, Xiangrui TIAN. Infrared and visible image fusion based on cross-modal feature interaction and multi-scale reconstruction[J]. Infrared and Laser Engineering, 2025, 54(8): 20250210
Category: Optical imaging, display and information processing
Received: Apr. 3, 2025
Accepted: --
Published Online: Aug. 29, 2025
The Author Email: Rui YAO (yaorui@nuaa.edu.cn)